Goal-oriented Process Mining: A Scalability
Experiment

Mahdi Ghasemi
School of EECS
University of Ottawa
Ottawa, Canada
ghasemi75 @gmail.com

Abstract—Process mining exploits event logs to discover an
organization’s as-is process models, which is an important re-
quirements engineering activity. However, process mining often
results in complex ‘“spaghetti-like” models that are difficult
to interpret. Different mechanisms can support making sense
of such complex models, such as filtering process instances
(traces) before feeding them to process mining tools. This paper
experiments with one particular approach called Goal-oriented
Processes Mining (GoPM). Given process goals of interest, GoPM
keeps only log traces that satisfy these goals to an expected level.
This allows mining a more focused process from the filtered
log, i.e., which only captures behavior that satisfies the goals in
question. Three algorithms are implemented, and their scalability
is assessed through six experiments involving a total of 1960 runs
over synthetic event logs. The experiments’ runtimes show that
the algorithms are feasible and scalable enough to apply to large
event logs, which indicates their practicality.

Index Terms—Process Mining, Goal Modeling, GRL, GoPED,
Binary Optimization

I. INTRODUCTION

Process mining is an approach to discover as-is processes
in organizations, based on data-driven evidence in the form
of event logs. Such logs capture the “footprints™ of processes,
also known as events, in the organization’s Information Sys-
tems (IS). This provides a more realistic view of the process
as opposed to relying on the (potentially biased or incomplete)
perception of process participants or owners [1]]. The discov-
ered process models, often represented as Directly-Follows
Graph (DFGs), Petri Nets, or Business Process Model and
Notation (BPMN) models [2]], with quantitative annotations
(frequencies, delays, etc.), enable requirements engineers to
analyze processes for performance, cost, compliance-related
or other issues, and assess potential improvement, redesign,
and automation opportunities [3]], [4].

Goal modeling, on the other hand, is a requirements en-
gineering (RE) approach mainly used to capture actors, their
goals, and their relationships, in order to analyze what-if and
trade-off situations in support of decision making [5]]. Whereas
process models focus on who, what, where, and how aspects of
as-is organization processes, goal models mainly focus on why
and how much aspects. Goal models and process models thus

This work was supported by NSERC Discovery and PGS-D grants.

Daniel Amyot
School of EECS
University of Ottawa
Ottawa, Canada
damyot@uottawa.ca

William Van Woensel
Telfer School of Management
University of Ottawa
Ottawa, Canada
wvanwoen @uottawa.ca

provide complementary perspectives that can benefit many
areas, including process mining [6].

One major issue commonly faced in process mining is the
complexity of the resulting process models, often figuratively
characterized as ‘“spaghetti-like”, which hinder their inter-
pretability and thus their usefulness. Such complexity derives
exactly from its data-driven nature—event logs, often extracted
from multiple organization IS, may contain many different
types of process instances (“traces”), at times resulting from a
lack of process structure, process variability, noise, truncated
traces, and other such reasons [1]]. Different mechanisms exist
to mitigate such complexity issues [7]], [8]], including:

o Exclusion of truncated traces, which started before or
finished after the event log time window;

« Noise filtering, to eliminate infrequent activities or traces;

« Trace filtering, along attributes such as region, dates, or
product;

o Clustering, to decompose a model into separate models
based on similarity metrics at the trace or activity levels;

« Abstraction, where some simple activities are aggregated
into more abstract ones;

« Object-centric modeling, where an object type (e.g., an
order or invoice) follows its own path and cross-object
relations are shown explicitly.

This paper explores a filtering technique that leverages the
complementary nature of goal modeling and process mining,
called Goal-oriented Process Mining (GoPM, see Fig. [I).
Here, process traces are selected that meet goals of interest, at
given satisfaction levels, within a goal model. Subsequently, a
focused and simplified process can be mined from the filtered
log, capturing behavior that satisfies the goals in question.
In other words, GoPM is able to improve the rationality of
discovered models, i.e., their alignment with desired goals.

In order to remain independent from particular process
mining tools, GOPM performs such filtering on the input
event log itself. In detail, given an event log that contains
indicator attributes, a goal model, and desired goal criteria (i.e.,
goals with desired satisfaction levels), GOPM selects process
variant in the log that satisfy the goal criteria, and produces a

A process variant is a unique sequence of activities in a process, and can
cover multiple process instances (traces).

https://orcid.org/0000-0003-1821-9994
https://orcid.org/0000-0003-2414-1791
https://orcid.org/000-0002-7049-8735

filtered log. GOPM handles non-trivial criteria for aggregating
sets of traces dynamically (e.g., based on averaged values for
specific goals or the entire goal model), something that can be
solved through binary optimization [9]].

This paper builds on previous work on GOPM that intro-
duced a first version of three selection algorithms for process
variants, collectively named Goal-oriented Process Enhance-
ment and Discovery (GOPED) [9]], with preliminary tool sup-
port for preparing the traces needed as input to these selection
algorithms [10]. This paper contributes a revised version of
these algorithms, their Python-based implementation, and a
performance assessment focused on execution times as input
event logs become larger and more complex. Our research
question here is: How fast can the GOPED algorithms select
traces from event logs when the complexity of the log varies
along diverse factors? Such factors include the number/length
of cases/traces, their distribution, the number of goals, and
goal satisfaction levels (criteria boundaries).

In this paper, Sect. |lI| first gives an overview of GOPM
followed by an illustrative example in Sect. Section
describes the three GOPED algorithms, which are then as-
sessed in Sect. [V] for scalability against six event log factors.
Section @ describes related work, whereas Sect. @] presents
limitations and threats to validity. Finally, Sect. provides
our conclusions.

II. GOAL-ORIENTED PROCESS MINING

The main input of conventional process mining activities is
the event log, resulting from the execution of processes and
extracted from different IS. A log includes a number of events,
which are minimally described by an instance/trace/case iden-
tifier, the event/activity name, and timestamps, but can also
have other attributes (e.g., resources and indicators). Process
mining techniques have been growing into activity-focused
approaches that do not typically consider goals pursued by
individual cases and satisfaction levels for different stakehold-
ers’ goals [11]. This situation can threaten the rationality of
discovered models, which adds to the complexity of already
hard-to-read “spaghetti-like” models that often result from
process mining. Although such complex models reflect reality,
they do not distinguish between traces that pursue different
goals (e.g., processing time vs. outcome quality), or traces
that are misaligned with any relevant goal [12]. This lack of
a goal focus, especially in flexible environments that allow
many alternatives during process execution, has to currently
be manually dealt with by process mining practitioners.

A literature review of the intersection of goal modeling and
process mining [[11]] showed that, although both research areas
are growing, few studies are conducted at their intersection.
The area of intention mining [13|], while related to this
intersection, is more about mining process intentions than
being a goal-based filtering technique per se. The combination
of goal modeling and process mining can achieve synergetic
effects that augment the rationality and focus of the discovered
process models and eventually improve the satisfaction of
process stakeholders, especially in an RE context [[14].

GOPM was proposed to partially address the above research
gap. GOPM is a process mining approach concerned with both
the sequencing of activities on the one hand, and processes’
goals and satisfaction indicators on the other. GOPM includes
data pre-processing steps (blue box on the left of Fig. [I) to
enhance the input event log: it first extracts traces from the
event log, and then adds satisfaction levels of corresponding
goals (from a goal model) to the extracted traces as additional
attributes [[10]. GOPED algorithms then exploit these new
attributes (red box on the right of Fig. [T) to select the traces
that meet certain goal criteria [9]. The selected traces are
then transformed again to an event log before feeding the
latter to a conventional process mining tool, which generate a
corresponding process model (DFG, BPMN, Petri Nets, etc.).

Many goal modeling languages have been proposed to
support RE activities [5]. GOPM uses one of them, namely
the Goal-oriented Requirement Language (GRL), part of
the User Requirements Notation international standard [15].
GRL support different types of goals and goal relationships
(AND/OR/XOR decomposition, contributions, and dependen-
cies), together with qualitative and quantitative satisfaction
propagation mechanisms [16]. But more importantly, GRL
includes an indicator concept [|15]], [[17], [[18]] that can convert
values from event logs into normalized satisfaction levels.
These levels are propagated to the rest of the goal model,
and then goal satisfaction values are used by GoPM to select
goal-satisfying traces.

III. ILLUSTRATIVE EXAMPLE

A simplified diagnosis of gestational diabetes (DGD) pro-
cess from healthcare is used here to illustrate GoPM and
its algorithm. An event log of 10 patients (cases) who went
through the DGD process is shown in Table [l We use short
names to encode the activities: a = admission, b = regular
test, ¢ = check the result, d = request for advanced test, ¢ =
advanced test, f = request for repetition, and g = send the
result. There are five different variants in this event log, each
covering different numbers of cases, which are separated by
horizontal lines. Extra case attributes: process duration in days,
its overall cost, patient satisfaction rating (on a 1-to-10 scale,
where 10 is the best rating), and accuracy of the result (1 =
correctly diagnosed, and 0 = incorrectly diagnosed).

Figure [2a) shows the Directly-Follows Graph (DFG) rep-
resentation of this entire event log, mined using the Apromore
tool [[19]. This visualization also shows the total frequencies
of activities and their transitions, as well as average times
between activities. With more realistic (and longer) logs, such
models often become too complex to understand, hence the
need for mechanisms such as abstraction and filtering.

Let us now assume a simple GRL model (Fig. [3) for the
DGD process that shows the main patient satisfaction goal
(G6) and how it is decomposed. Indicators (doubled-lined
hexagons), assessed through the extra attributes of the event
log (Table [[), contribute the leaf goals. For example, patient
rating contributes fully (100%) to the satisfaction of G3, which
in turn is a partial contributor (at 25%) to GS.

Inputs:

Original
Event Log

Data preprocessing

| Extracting

traces

Goal Model

Selection algorithms Output:

- e e e e o Em = Em = = == = Process ™ Process
Extending with Enhanced G I
g goals event log selection Selected cases||
algorithms
|| T |

== =

Goal Criteria

Fig. 1. Overview of GOPM, including its GOPED algorithms.

3, instant

10
¢ ...L”.S.‘ﬁf.“....bo
10, instant

10 10 ‘4
instant 2 1.7 days B 121 days

10, instant 14, instant

6
d BE

7, instant

a) Process model discovered from the original event log by Apromore

3
Q,,iﬂﬁ)@ut,

b) Algo 1 (case perspective) with G1>80, G4>100, and confidence = 60%

a b o 9
3, instant 3, instant 3, instant 3, instant

6 6 b 6
nstany a 15davs lizda
6, instant 6, instant

1, instant

d) Algo 3 (organization perspective) with comprehensive satisfaction (=66.1) > 65

Fig. 2. Initial process model (a), with models illustrating the three algorithms (b-d), all shown as Directly-Follows Graphs using Apromore.

TABLE 1
DGD EVENT LOG FOR 10 PATIENTS, WITH CURRENT DATA ATTRIBUTES.

Case Trace Days Cost Rating Accuracy
C_1 (a,b,c,g) 4 400 9 1
c2 ({ab,cg) 5 400 9 1
C3 (abcyg) 5 400 9 0
C. 4 (a,b,¢,d,e,c, g) 11 850 8 1
C.5 (a,b,¢c,d,e,c, g) 9 850 7 1
C_6 (a,b,¢,d,e,c, g) 10 850 8 1
Cc_7 (a,b,¢, f,b,¢,9) 8 600 7 1
C.8 (a,b,c, f,b,c,d,e,c,g) 17 1100 6 1
Co labefbedecg) 16 1100 5 I
C_10 (a,b,c,d,b,c,d,e,c,g) 31 1150 4 1

In GRL, indicators (a.k.a. KPIs) have three parameter values
against which an observable value is compared: the target
(satisfaction = 100), the threshold (satisfaction = 50), and the
worst (satisfaction = 0). Satisfactions levels are interpolated
linearly between the target and threshold values, and between
the threshold and worst values [15], [[17]. For our DGD goal
model, these indicator parameters are defined in Table [T}

For example, using Fan et al.’s arithmetic formula gener-
ation tool for GRL models , the process cost indicator

G6: Patient
Satisfied

G5: Well-
organized
Process

Accurately
Screened

Result
accuracy

G2: Cost
Decreased

G3: Smooth
Process

G1: Process

Time
Decreased

100 100 100

Patient
rating

[.\ [1

<Process time) (Process cost > (

Fig. 3. Goal model of the DGD process.

function would be as follows:

100 if C < 400
0 if C > 1200
950 — C .
Process_Cost(C) = § | ———— | x 50 + 50 if 400 < C < 950
950 — 400
950 —

X 50 4+ 50 if 950 < C' < 1200

" 950 — 1200

TABLE II
KPI DEFINITIONS FOR THE DGD PROCESS.

Indicator Linked Goal =~ Worst v. Threshold v. Target v.

Process time Process time 35 13 4

(days) decreased

Process cost Cost 1200 950 400

$) decreased

Patient rating ~ Smooth pro- 1 6 10
cess

Result Accu- Accurately 0 - 1

racy screened

The initial event log (Table [[) can then be augmented
with additional columns where the satisfaction level of each
goal has been computed from the indicators. For exam-
ple, for case C_7 (where the cost is 600, see Table [H),
Process_Cost(600) = 82. After computing the indicators for
all the cases, we can populate the satisfaction values for the
goal columns (Table [[TI), leading to an enhanced log that can
be filtered on these values.

TABLE III
ENHANCED LOG OF THE DGD PROCESS: ADDITIONAL GOAL
SATISFACTION LEVELS, WITH AGGREGATED VALUES.

Case G1 G2 G3 G4 G5 | G6
C_1 100 100 88 100 97 97
Cc2 94 100 88 100 95 95
Cc3 94 100 88 0 95 0

C_4 61 59 75 100 64 64
C.5 72 59 63 100 65 65
C_6 67 59 75 100 66 66
C_7 78 82 63 100 76 | 76
C_8 41 20 50 100 36 36
(O] 43 20 40 100 34 34
C_10 9 10 30 100 15 | 15

Aggregate satisfaction: 659 609 66 90 64.1 \ 54.8

Adding goal models in a process mining context enables
GOPM to discover simpler and understandable process models
that meet measurable goal-oriented criteria. The models gen-
erated through GOPM can help organizations understand and
promote good practices (e.g., by reinforcing traces/behavior
that meet certain goals), and help people avoid process options
that lead to underperforming goal trade-offs (e.g., through
training, controls, automation, or improved processes).

IV. GOPED ALGORITHMS AND IMPLEMENTATION

This paper provides slight improvements over a first version
of the three Goal-oriented Process Enhancement and Discov-
ery (GOPED) algorithms presented in [9], together with an
implementation and an empirical scalability evaluation.

GOPED exploits goal models to filter event logs in such
a way as to keep the variants that meet certain goals. Algo-
rithm [1] focuses on a case perspective, whereby the cases in a
variant need to satisfy a set of goal criteria (goal, comparison
operator, and value). If the proportion of a variant’s cases that

Algorithm 1: Case_Perspective

Input: EnhancedLog ; // Log enhanced with goals

Input: Qcase: Set(criteria) ; // Each criterion is a
triple <goal, operator, value>

Input: conf: number ; // Confidence level

Output: CasesKept: Set(cases)

SortByTrace(EnhancedLog);
NumCases < NumberOfCases(EnhancedLog);
trace(casep) < () ; // Add empty trace before log
trace(caseNumcases+1) < {) 3 // . and after log
CasesKept + (;
index < 1;
while index < NumCases do
SameTraceC + () ; // Cases with same traces
NumSatCasesOfTrace <— 0;
repeat
SameTraceC <+ SameTraceC U{case€indes };
if caseingex meets all criteria of Qcase then
| NumSatCasesOfTrace++;
index++;
until rrace(caseindes) # trace(caseindes—1);
if NumSatCasesOfTrace/|SameTraceC| > conf then
3 // Keep case if confidence level is met
17 CasesKept < CasesKept U SameTraceC;
18 return CasesKept;

D=T- I B Y L -

e
SR G RR S

meet these criteria is higher or equal to an input confidence
level, then the variant will be kept; else, it is discarded. This
can help tolerate some amount of noise in the log.

Based on our example enhanced log (Tables [I] and [ITI),
Fig.[2(b) shows the DFG model discovered on the case variants
where G1 > 80 A G4 > 100, with a confidence of 60%. For
the first variant (cases C_1 to C_3), 2 out of 3 cases (67%)
satisfy these goal-oriented criteria, which meets the required
confidence level. None of the other variants meet these criteria,
and they are hence filtered out of the event log. This models
the behavior that sufficiently satisfies two of the goals in the
GRL model. Note that with a confidence level higher than
67%, Algorithm 1 would return an empty set of cases (e.g.,
an empty model) for this example.

Algorithm [2| focuses on a goal perspective, which finds the
largest subset of variants that collectively satisfy goal criteria,
each with their minimum satisfaction threshold. Algorithm [3]
handles the organization perspective, which finds the largest
variant subset that meets the entire goal model. These are
not trivial problems: adding a variant and its cases to the
subset might greatly help to satisfy the criterion related to
one goal, but, at the same time, harm satisfying the criterion
related to other goals. Both algorithms use constraint-based
optimization; after, a case ¢ is kept if x; evaluates to 1. To
either keep or exclude all the cases of a variant (all-or-none
rule), we check whether the cases’ traces involve identical
events, i.e., their traces are equal; if so, their x; values are
also made equal. The algorithms differ in the scope of goals:
specific goals (Algorithm [2)) or the entire model (Algorithm [3)),
and this is reflected in the optimization functions used.

For example, using Algorithm[2] the query could be all vari-
ants where, when aggregated together (e.g., using an average

Algorithm 2: Goal_Perspective

Input: EnhancedLog ; // Log enhanced with goals
Input: Qgou: Set(criteria) ; // <goal, threshold>
Input: G ; // Aggregation funct., one per goal
Output: CasesKept: Set(cases)

1 m < NumberOfCases(EnhancedLog) ; // NumCases

2 CasesKept + (;

3 Solve this binary optimization ; // z;,: when equal to
1, keep case ¢; ; S;;: satisfaction level of

goal j for case ¢;
(3

Maximize z =3 "", z; s.t.
Vr,t, 1<r<t<m:// All-or-none rule
trace(c,) = trace(c;) = zr = x¢
// Ensure that Qioal constraints are met
.) X ;’;1 TS5, .
Vj where G; € G : =, 2 threshold;

=17

X; € {0,1} // Two potential values for z;

4 \ J

5 for : =1 to m do
6 if z; = 1 then
7 | CasesKept < CasesKept U {c;}
8 return CasesKept;

Algorithm 3: Organization_Perspective

Input: EnhancedLog ; // Log enhanced with goals
Input: Qcomp: <oper € {<,=, >}, val € [0..100]>
Input: G ; // Goal model function

Output: CasesKept: Set(cases)

1 m < NumberOfCases(EnhancedLog) ; // NumCases

2 CasesKept + 0

3 Solve this binary optimization ; // z,: when equal to
1, keep case ¢ ; Si;:

goal j for case ¢;
s N\

satisfaction level of

Maximize z =) " z; s.t.

Vr,t, 1<r<t<m:// All-or-none rule
trace(c,) = trace(ct) = =, = 4

// E%sure that Q%Jmp constraint is met

G(Zi:rlnzi;ii’l Zlf}nm;;") < oper >< val >

Xi € {Ol,ill} // Two pofcielntial values for z;

4 o 7

g eeey

5 for i =1 to m do
6 if 2; = 1 then
7 | CasesKept < CasesKept U {c;}
8 return CasesKept;

function, as specified in our algorithm), G1 > 80 A G3 > 78.
Note that there is no confidence level in this algorithm. The
largest subset of variants that satisfies that query combines
the first and second variants (cases C_1 to C_6), with average
values G1 = 81.3 and G2 = 79.5. The process model
discovered from these variant is shown in Fig. fc). Adding
any other variant would dissatisfy one or both goals.

Finally, using Algorithm [3] a sample query would be to
include all variants whose aggregate (average) goal model
satisfaction is at least 65. The largest combination of variants
that satisfies that query includes cases C_1 to C_7, with an
average model satisfaction (G6) of 66.1. The model discovered

on these variants is shown in Fig. 2(d).

Our GOPM implementation (in Python) is composed of
four complementary components, all available onlineﬂ As
shown in Fig. m the first component (TraceMaker) extracts
traces (cases) from an original log. The second component
(EnhancedLogMaker) augments these traces with KPI and goal
satisfaction values, as defined in an input GRL goal model.
The third component implements the three GOPED algorithms,
and uses IBM CPLEX and DOcpIex.MPE] for the optimization
part. Finally, the fourth component (EventLogRefiner) filters
the original event log by only keeping the cases selected by
GOPED. The first two components were already presented
in [10]]; the implementation of the last two is introduced here.

V. SCALABILITY EXPERIMENTS AND RESULTS
A. Overview

Our research question was described in the introduction. In
our experiment, we use runtime as a key performance indicator
to evaluate the algorithms’ sensitivity to four event log factors:
(L1) distribution of cases among variants, (L2) number of
cases, (L3) number of traces, and (L4) length of traces; and
two goal factors, (G1) number of goal criteria, and (G2) the
goal criteria’s boundaries on satisfaction levels. Times were
measured on an Intel Core 17-2760QM CPU at 2.40 GHz, 8
GB RAM, and Windows 7.

Given that it is impossible to find real event logs that would
enable such detailed evaluation, we generated six sets of syn-
thetic event logs (using Python scripts), one for evaluating each
separate factor. Each set comprises event logs that vary along
the relevant factor, while the other five remain constant (except
for factors related to the distribution and the number of traces,
which are partially dependent). The first four experiments used
the following constant goal criteria:

e Algo 1: G1 > 80% A G2 > 75% with 70% confidence
o Algo 2: G1 > 80% A G2 > 5%
o Algo 3: Qcomp > 70%

More details about these experiments and their results can be
found online [20].

B. (L1) Distribution of Cases Among Traces

The cases in an event log can be distributed over different
traces (variants), and such different distributions may have an
impact on the performance of our algorithms.

A useful, heuristic way to generate distributions of cases
over the traces could benefit from the capabilities of the Beta
distribution from probability theory [21]]. This distribution is
defined over [0, 1]. There are two parameters, a, 5 > 0, which
control the shape of the distribution and determine if the
distribution has one mode and whether it is symmetrical.

Figure [] shows the Probability Density Functions (PDF)
used in our experiment. The PDF determines the likelihood
of a random variable having a value within a specific range
on the X-axis. We thus divide the X-axis interval [0-1] into

Zhttps://github.com/Mahdi-Ghasemi/
3https://ibmdecisionoptimization. github.io/docplex-doc/mp/index.html

https://github.com/Mahdi-Ghasemi/
https://ibmdecisionoptimization.github.io/docplex-doc/mp/index.html

(a) (b) (©

(d) (e) ()

Fig. 4. PDFs used for assessing the influence of distributions.

a number of bins, one for each trace t1,%s, ..., thum_traces-
Then, we can use the PDF to determine the likelihood of a
case (random variable) being assigned to a trace (X-axis bin).

(a) Beta(l, 1), the Uniform distribution where the same
number of cases is assigned to each trace.

(b) Beta(0.2, 6), which is highly skewed; a large number of
cases is assigned to a small number of traces, and a small
portion of cases is assigned to a large portion of traces.

(¢) Maximum Variance distribution — an extreme case of (b)
— where all traces except one have only a single case,
and the remaining trace has all the remaining cases.

(d) Beta(1, 1.15), where the distribution makes a concave-
down curve.

(e) Another extreme case assigns only one case to one trace,
and all remaining traces are equally assigned to the
remaining cases.

(f) Beta(l, 2), a triangle-shaped distribution — a middling
between (b) and (d).

The constant factors are 50,000 cases and 1000 traces of
length 6 (i.e., including 6 events). We created 6 separate event
logs, one per distribution (a)-(f), and applied the algorithms
on each event log 20 times. The averages are reported here.

Results. In the end, there was no meaningful trend for the
runtime when the distribution of cases among traces changes,
for all three algorithms. Based on a one-way ANOVA test with
a significance level of 0.05, the null hypothesis “the means of
all six groups are equal” is rejected for Algorithm 1, i.e., the
six groups of runtimes do not have the same mean. Practically,
the average time of 20 runs for distribution (e) is 0.276 s (as
the maximum), while the average time of 20 runs for (c) is
0.248 s (as the minimum). The difference between those two
runtimes is only 11% (i.e., 0.028 s), which does not suggest a
significant correlation between the runtime and the distribution
of cases among traces. The same situation holds for the two
other algorithms as well.

C. (L2) Number of Cases

Here, as the number of cases reflects the size of the data
log that the algorithm should process, we anticipate that this
factor positively correlates with runtime.

We vary the number of cases along a logarithmic progres-
sion: 50 x 10 where © = 1,4/3,5/3,...,4/3,...,4. This
leads to these numbers of cases: 500, 1077, 2321, 5000, 10772,
23208, 50000, 107722, 232079, 500000.

The constant factors include 500 traces of length 6 with a
Beta(0.2, 6) distribution. We created 10 event logs, one for
each number of cases, and the algorithms were used on each
event logs 10 times. The averages are reported here.

Results. As Fig. [5] shows, the runtime of all three algorithms
increases with the number of cases. Figure [5[a) shows a
linear correlation between the number of cases and runtime
for Algorithm 1 (P-value is almost zero). The coefficient of
determination (R?) is 0.9994, meaning 99.94% of the variance
in the runtime can be explained by the number of cases.
Figure [5[b) shows that a quadratic polynomial curve is a good
fit here, with R? = 0.9993 for Algorithm 2. A similar positive
correlation (R? = 0.9999) applies for Algorithm 3 in Fig c).

Comparing the maximum runtime of each algorithm that
happens when the number of cases is 500,000 reveals that
with the same event log, the runtime of Algorithm 3 is about
two times longer than Algorithm 2 and about 300 times longer
than Algorithm 1. Algorithm 1 is a straightforward algorithm
that uses two nested loops, but the other two algorithms use
CPLEX to solve expensive optimization problems.

D. (L3) Number of Traces (Variants)

In this experiment, the main goal is to find how runtimes
change when the number of traces/variants changes.

We vary the number of traces along a linear progression
(14ix(50000—1)/9;i=0,1,...,9), leading to 10 numbers
of traces: 1, 5556, 11112, 16667, 22223, 27778, 33334, 38889,
44445, and 50000 traces. The fixed factors include 50000
cases, traces of length 6, with a Beta(0.2, 6) distribution. The
algorithms were applied on each of the resulting 10 event logs
10 times, and the averages are reported here.

Results. The runtime of Algorithm 1 (y, in seconds, not
visualized here) has a strong quadratic correlation with the
number of traces (), namely y = 5 x 107%22 — 7 x 107 %z +
0.5166; R?> = 0.994. While the correlation between the two
variables is positive for Algorithm 1, for the other algorithms,
the correlation is negative. A linear trendline with a negative
slope (y = —8 x 107%z + 7.0305) with a high R? = 0.9685
suggests that the runtime decreases when the number of traces
increases. For Algorithm 3 however, R? = 0.3843 suggests a
weaker correlation.

The negative trend slopes for Algorithms 2 and 3 are not
surprising because when the number of traces increases, the
number of cases with the same trace decreases, and, in turn,
the number of constraints made to handle the all-or-none rule
decreases. It is noteworthy that for every n cases with the same
trace, n-1 constraints will be generated.

E. (L4) Length of Traces (Variants)

Traces, i.e., variants, are the sequences of activities recorded
in logs. Our GOPED algorithms deal with the traces as string

(a) Algo 1

y = 6E-06x - 0.0061

23 RP=09994 e
z 5 0 e
o
E1s
L (e) R (et -
O I B Fo
0.5
0 o
¥ M] W o o ® ® © ®
° \@9 @9 1@9 16@9 ®° %@9 o oo @Qp
Number of cases
(b) Algo 2
400
1}
350 -1
300 y = 1E-09%2 + 2E-06x + 1.322
R?=0.9993
— 250
X
o
£ 200
= 150
100
50 |t
P PRI FRRPRITITIE i
) ® N < © o o o Y ©
S K S R R IO S C
Number of cases
(c)Algo 3
900
800
700 y = 3E-09x? + 1E-05x + 1.6324
600 R?=0.9999
w
~ 500
(7]
€ 400
=

Number of cases

Fig. 5. Runtimes for different numbers of cases.

variables. In all three algorithms, the log should be sorted
based on its traces, and there are steps where the traces are
compared (e.g., Algorithm 1: lines 1 and 15). Typically, the
time needed for comparing and sorting strings depends on the
number of characters that should be scanned. In real-world
data logs, the traces are usually long. In this step, the main
goal is thus to find how the runtime changes when the length
of traces changes.

We vary the length of traces along a linear progression
(6+14x (50000—16)/9;i =0,1,...,9), leading to 10 lengths:
6, 561, 1116, 1671, 2226, 2780, 3335, 3890, 4445, 5000
activities. The constant factors include 50,000 cases and 5000
traces, with a Beta(0.2, 6) distribution. The algorithms were
used on the resulting 10 event logs 10 times, and averages are
reported here.

Results. There is a strong positive linear correlation between
the runtime (y, in seconds) and the length of traces (z) for all
three algorithms:

1) Algorithm 1: y = 0.0011z + 0.3308; B2 = 0.9996

2) Algorithm 2: y = 0.0011x + 6.4472; R? = 0.9981

3) Algorithm 3: y = 0.0011z + 13.7; R? = 0.9977

Unsurprisingly, the runtime increases when the length of
traces increases. It is noteworthy that the length of traces
does not impact the dimensions of the optimization problem
generated for Algorithms 2 and 3. The only algorithm steps
that are impacted by the trace lengths are about sorting the
traces and performing comparisons between two traces.

F. (G1) Number of Considered Goals

In Algorithms 1 and 2, a set of goals with satisfaction levels
(goal criteria) are input. In Algorithm 1, the satisfaction level
of each case will be checked against the criteria. Therefore, for
each case, the number of comparisons equals the number of
considered goals. In Algorithm 2, each considered goal makes
a new constraint for the optimization problem. Therefore,
it makes sense to consider the impact of the number of
considered goals on the runtime. In Algorithms 3, the goal
model is used to calculate the comprehensive satisfaction level
from aggregated satisfaction level of all considered goals.
Therefore, the number of considered goals for this algorithm
represents the size of the goal model.

In this experiment, we generated 10 event logs with 50,000
cases and 1,000 traces of length 6, along a Beta(0.2, 6)
distribution. The variable part was the number of goals in the
goal model, from 1 to 10, with the following criteria:

o Algo 1: > 80% for all considered goals, 70% confidence
o Algo 2: > 80% for all considered goals
e Algo 3: Qcomp > 80%

Results. For Algorithm 1, we observed a very low linear
coefficient between the runtime (y, in seconds) and the number
of considered goals (x), namely y = 0.0069zx + 0.4783; R? =
0.6026. This suggests that the number of goals has a positive
but very small impact on the runtime. When the number of
considered goals increases, Algorithm 1 makes more compar-
isons for each case, but checking the criteria for each case
will return false at the first considered goal whose satisfaction
level does not meet the criterion.

Meanwhile, the results for Algorithm 2 (y = 1.7753z +
4.096; R> = 0.9509) and Algorithm 3 (y = 1.9362x +
7.4548; R? = 0.9917) suggest a positive strong linear cor-
relation between the two variables. Therefore, increasing the
number of considered goals does not significantly impact the
runtime of Algorithm 1, but it substantially increases the
runtimes of the two other Algorithms.

G. (G2) Goal Criteria’s Boundaries

In this last experiment, the goal criteria’s boundaries for
satisfaction levels (in addition to the confidence level for
Algorithm 1) are explored to assess whether the boundaries
that mathematically impact the number of selected cases will
also impact the runtime.

The constant factors for the event logs here include 50,000
cases, 1000 traces of length 6, a Beta(0.2, 6) distribution, and
two goal comparisons. For all algorithms, we vary the criteria’s
boundaries for both goals along a linear progression (1+11 x
;0 =0,1,...,9), leading to 10 boundaries: 1%, 12%, 23%,

= e e It e S S S E—
p 2
£ 15
- |
0.5 1 1
1 L
0 e Tk s e
10 20 30 40 50 60 70 80 90 100
Goal boundaries threshold
(b). Alg2
10
8 .
—_ [l Ay Il R I A B e u
0
2 6l i
I e e el U
=
2
0
10 20 30 40 50 60 70 80 90 100
Goal boundaries threshold
(c). Alg3
20
15
-
@ 1
EY
=
5
0
10 20 30 40 50 60 70 80 90 100
Goal boundaries threshold
(d). Algl. Confidence level
25 mmmmmmmmmmmmmmm— oo
[' [} i
2 :] 1
(]
[} -
g 15 e
E o1 e P .
0.5 i i
0 [T S SR IS R, S
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Confidence Level

Fig. 6. Runtimes for different criteria’s boundaries.

34%, 45%, 56%, 67%, 718%, 89%, 100%. We also investigate
the confidence for Algorithm 1, with the same ten percentages.
The algorithms were used on the 10 resulting event logs 10
times, and averages are reported here.

Results. As Fig. [6] shows, none of the results suggest a
meaningful trend for runtimes when the threshold for the
boundaries increases. There are two points in Fig. @a) and (b)
where the trend of runtime changed. Based on an analysis on
the data logs, these phenomena happen in the neighborhood of
the average of the random distribution function that generated
the synthetic satisfaction levels. Therefore, these phenomena
are caused by a data bias.

The same situation and the same bias are shown in Fig. [6[d)
for the relation between runtime and the confidence level for
Algorithm 1. The figure suggests that out of the neighborhood
of the mean of the functions that generated the satisfaction
level, there is no meaningful trend for the runtime when the
confidence level changes.

H. Evaluation Summary

To answer our research question (Sect. E[) the runtime
performance of the three GOPED algorithms was assessed in
total on 1960 executions over logs with different, controlled
characteristics. Six factors were considered to find how the
runtime change when the factors change. Table [[V]summarizes
the correlation (positive or negative; linear, quadratic, or none)
between the runtimes of our implementation of the algorithms
and the six factors.

TABLE IV
CORRELATION BETWEEN ALGORITHM RUNTIMES AND FACTORS

Factor Algo. 1 Algo. 2 Algo. 3
(L1) Dist. cases / traces No corr. No corr. No corr.
(L2) Number of cases Pos., Linear Pos., Quadr. Pos., Quadr.
(L3) Number of traces Pos., Quadr. Neg., Linear Neg., Linear
(L4) Length of traces Pos., Linear Pos., Linear Pos., Linear
(G1) Num. cons. goals Pos., Linear Pos., Linear Pos., Linear
(G2) Criteria’s bounds No corr. No corr. No corr.

The factor that has the most substantial impact on the
runtime is the number of cases. This factor is the only factor
that has a positive quadratic correlation with the runtime for
two Algorithms (2 and 3). Such algorithms select cases by
forming and solving an optimization problem. For Algorithm
1, there is a quadratic correlation for the number of traces, but
that number is usually much smaller than the number of cases
in an event log.

The longest runtime of all 1960 runs was 830 seconds, for
the execution of Algorithm 3 on an event log of 500,000 cases,
using the aforementioned hardware setup. Such a computer,
with a CPU from 2011 and an old operating system, can
nowadays be outperformed by a factor of 10 on common
laptops. The experiments’ runtimes show that the GOPED
algorithms are feasible and scalable enough to apply to large
event logs, and hence suggest that the algorithms and their
implementation can be used in practice.

VI. RELATED WORK

Based on our literature review on goal-oriented mining [[11]],
other reviews on process mining [8[], and more recent work
published since, we make several observations on work related
to our GOPM approach.

GOPM and its GOPED algorithms aim to find a good se-
quence of activities that satisfy predefined goals, as measured
with KPIs. Armentano and Amandi [22] and Yan et al. [23]
aim to discover goals from event logs; Santiputri et al. [24]]
mine goal refinement patterns from multi-layered event logs,
and compose these patterns to generate a goal model. Instead,
GOPM uses predefined goals with relationships as input. Such
input goal models can be constructed using conventional RE
approaches (e.g., [25[, [26]). Intention mining [13]] shares
some ideas with our work but tries to discover intentional
process models, not activity-based process models that satisfy
specific goals.

Closer to GoPM, the work of Dabrowski et al. [|14] also
suggests combining process mining (on event logs produced by
regular and crowdsourced system users) and goals as a means
to elicitate requirements. Processes mined from regular user
behavior are analyzed for discovering potential goals, which
are then used to guide crowd-based process mining exper-
iments for requirements validation. However, this approach
does not use goal models as input for case selection in an
existing log.

Ponnalagu et al. [27] consider different variants of an
industry-scale business process that ideally contribute to
achieving the organization’s goals. They worked on the admis-
sion of a deviating process instance as a valid variant of the
intended process that achieves the same goals as the intended
process (e.g., a workaround). Although they do not consider
a predefined goal model as input, their idea that different
variants of a process can be accepted to satisfy a goal is aligned
with GOPM’s main idea.

Dees et al. [28]] proposed a methodology that takes event
logs together with a process model (either discovered or
designed manually) and repairs the process model with respect
to the behaviors that do not violate any rule and have a
significant improvement on a predefined KPI. This method
can be used to align a process model with one goal whose
associated KPI is included in the event log. This approach is
close to Algorithm 1 in spirit, but limited to one input KPI.
Note that there are also repair methods that use goals as input,
and in particular Takei and Horita [29] use GOPM to enhance
their event log with goal-oriented satisfaction levels before
repairing mined Petri Net models.

We also encounter approaches that cluster [30] or filter [31]]
cases along a specific KPI stored in the event log, enabling
discovery, comparisons, and an analysis of deviations from
expectations. Such approaches are simplifications of Algo-
rithm 1, as GOPM handles multiple aggregated KPIs (through
a goal model) as input, and performs a selection based at the
variant level (with a confidence level) instead of the case level.

Note that we are not aware of other techniques that use
binary optimization for the selection of variants along aggre-
gated results the way Algorithms 2 and 3 do. The factor-based
scalability analysis used here for GOPM’s GOPED algorithms
is also original.

VII. LIMITATIONS AND THREATS TO VALIDITY

This section explores important limitations of GOPM and
its GOPED algorithms, as well as threats to the validity of our
empirical performance evaluation.

A. Limitations

Absence of goal-related information in event logs. In GOPM,
an important new challenge is the absence of real-world logs
that include some goal-related attributes (e.g., patient satisfac-
tion in healthcare) besides the usual event characteristics (e.g.,
timestamps). Although some potential KPIs can be extracted
from existing logs (e.g., processing time), the goals of each

trace and their satisfaction levels are seldom available and must
be inferred from other sources.

Tolerance to noise in event logs. Another challenge relates
to the level of precision offered in the three algorithms. Noise,
such as meaningless differences in activity sequences, can
lead to different traces. For instance, cases from one trace
could be selected and those from the other ruled out (all-or-
none rule), but the cases from both traces should have been
treated the same. The confidence level in Algorithm 1 was
meant to mitigate some of the issues related to noise, but its
effectiveness in practice remains to be demonstrated on real
applications.

Concept drift in the requirements and goals. In GOPED, we
assume that the goal models and requirements will not change
in unforeseen ways. However, just like processes, goals can
also evolve and drift over long durations. At this time, our
approach does not handle goals that evolve over time.

B. Threats to Validity

There are also several threats to the validity of our evalua-
tion of the three GOPED algorithms.

Construct validity assesses the degree to which the used
evaluation tools are able to answer the research question. One
important threat pertains to the use of synthetic event logs to
assess the performance and scalability of GOPED. Six different
performance-related factors were explored in that experiment.
Although these factors cover commonly-used characteristics
of event logs, other might exist that would have an impact
on the performance as well. In addition, each of these factors
was experimented with in isolation, and combinations of two
or more factors were not assessed. More performance-related
experiments could be performed on existing/benchmark event
logs that might also better reflect the complexity of real
environments (including noise in the logs). One challenge
here would be to augment the logs with realistic goal-oriented
information as logs typically do not include explicit goals,
KPIs, or goal models.

Internal validity focuses on bias and other confounding
factors. One such threat here is that bias might be introduced
by having the authors create the event logs, perform the
experiments, and analyze the results. We have attempted to
be transparent and fair in our experiment setup and analysis
as a mitigation; further, our GOPM implementation is openly
available for others to perform similar evaluations.

External validity focuses on the extent to which the evalua-
tion results can be generalized to other situations or contexts.
We have limited our evaluation to runtime performance, and
did not check memory usage along the way. We have also
limited our assessment to GRL models (as GRL supports both
indicators and numerical satisfaction levels), and our results
may not hold for other goal modeling languages. One last but
important threat is that the usability of GOPM itself was not
assessed by other users.

VIII. CONCLUSION

This paper presented a Goal-oriented Process Mining ap-
proach (GoPM, Fig. that enables the quantitative, goal-

driven selection of relevant cases and variants in an event

log.

We particularly focused on GOPM’s three revised GOPED

algorithms (for the case, goal, and organization perspectives),
which use KPI-informed GRL models as input. An empirical
experiment provided positive results related to GOPED’s scal-
ability along six factors (Table [[V), which suggests practicality
on real-sized event logs, despite some documented limitations
and threats to the validity of our experiment.

Through our GOPM implementation, the discovery of goal-
oriented process models provides a new tool for supporting
requirements engineers in better understanding as-is process
that meet specific quantitative goals, based on evidence. Future
work involves the integration of GOPM to existing process
mining tools, as well as usability studies on real event logs
and goal models.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

REFERENCES

W. M. P. van der Aalst and J. Carmona, Process Mining Handbook,
ser. LNBIP. Springer Nature, 2022, vol. 448. [Online]. Available:
https://doi.org/10.1007/978-3-031-08848-3

OMBG, “Business Process Model and Notation (BPMN), version 2.0.2,”
2014. [Online]. Available: https://www.omg.org/spec/BPMN/2.0.2

M. Ghasemi, “What requirements engineering can learn from process
mining,” in 2018 Ist International Workshop on Learning from other
Disciplines for Requirements Engineering (D4RE). 1EEE, 2018, pp.
8—11. [Online]. Available: https://doi.org/10.1109/D4RE.2018.00008

T. M. d. Menezes and A. C. Salgado, “Using logs to reduce the impact
of process variability and dependence on practitioners in requirements
engineering for traditional business process automation software,”
IEEE Access, vol. 12, pp. 192874-192 893, 2024. [Online]. Available:
https://doi.org/10.1109/ACCESS.2024.3514801

J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja,
M. Salnitri, L. Piras, J. Mylopoulos, and P. Giorgini, “Goal-oriented
requirements engineering: an extended systematic mapping study,”
Requirements engineering, vol. 24, pp. 133-160, 2019. [Online].
Available: https://doi.org/10.1007/s00766-017-0280-z

D. Amyot, O. Akhigbe, M. Baslyman, S. Ghanavati, M. Ghasemi,
J. Hassine, L. Lessard, G. Mussbacher, K. Shen, and E. Yu, “Combining
goal modelling with business process modelling: Two decades of
experience with the User Requirements Notation standard,” Enterprise
Modelling and Information Systems Architectures (EMISAJ), vol. 17, pp.
2:1-38, 2022. [Online]. Available: https://doi.org/10.18417/emisa.17.2
K. Diba, K. Batoulis, M. Weidlich, and M. Weske, “Extraction,
correlation, and abstraction of event data for process mining,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 10, no. 3, p. 1346, 2020. [Online]. Available: https://doi.org/10.
1002/widm.1346

M. Imran, M. A. Ismail, S. Hamid, and M. H. N. M. Nasir,
“Complex process modeling in process mining: A systematic review,”
IEEE Access, vol. 10, pp. 101 515-101 536, 2022. [Online]. Available:
https://doi.org/10.1109/ACCESS.2022.3208231

M. Ghasemi and D. Amyot, “Goal-oriented process enhancement
and discovery,” in International conference on business process

management. Springer, 2019, pp. 102-118. [Online]. Available:
https://doi.org/10.1007/978-3-030-26619-6_9
——, “Data preprocessing for goal-oriented process discovery,”

in 27th IEEE International Requirements Engineering Conference
Workshops (RE 2019). 1EEE, 2019, pp. 200-206. [Online]. Available:
https://doi.org/10.1109/REW.2019.00041

——, “From event logs to goals: a systematic literature review of
goal-oriented process mining,” Requirements Engineering, vol. 25,
no. 1, pp. 67-93, 2020. [Online]. Available: |https://doi.org/10.1007/
s00766-018-00308-3

T. Takei and H. Horita, “Analysis of business processes with
automatic detection of KPI thresholds and process discovery based on
trace variants,” Research Briefs on Information and Communication
Technology Evolution, vol. 9, p. 59-76, Sep. 2023. [Online]. Available:
https://rebicte.org/index.php/rebicte/article/view/157

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

(25]

[26]

[27]

[28]

[29]

(30]

[31]

G. Khodabandelou, C. Hug, R. Deneckere, and C. Salinesi, “Process
mining versus intention mining,” in Enterprise, Business-Process and
Information Systems Modeling. Springer, 2013, pp. 466—480. [Online].
Available: https://doi.org/10.1007/978-3-642-38484-4_33

J. Dabrowski, F. M. Kifetew, D. Muiante, E. Letier, A. Siena,
and A. Susi, “Discovering requirements through goal-driven process
mining,” in 2017 IEEE 25th International Requirements Engineering
Conference Workshops (REW), 2017, pp. 199-203. [Online]. Available:
https://doi.org/10.1109/REW.2017.61

ITU-T, “Recommendation Z.151 (10/18) User Requirements Notation
(URN) - Language definition,” 2018. [Online]. Available: hittp:
/Iwww.itu.int/rec/T-REC-Z.151/en

D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and
E. Yu, “Evaluating goal models within the goal-oriented requirement
language,” International Journal of Intelligent Systems, vol. 25, pp.
841-877, 2010. [Online]. Available: https://doi.org/10.1002/int.v25:8

A. Pourshahid et al., “Business process management with
the User Requirements Notation,” Electronic Commerce Re-
search, vol. 9, pp. 269-316, 2009. [Online]. Available:

https://doi.org/10.1007/s10660-009-9039-z

Y. Fan, A. A. Anda, and D. Amyot, “An arithmetic semantics for GRL
goal models with function generation,” in International Conference on
System Analysis and Modeling. Springer, 2018, pp. 144—162. [Online].
Available: https://doi.org/10.1007/978-3-030-01042-3_9

R. Conforti et al, “Analysis of business process variants in
Apromore,” in BPM Demo Session 2015 [CEUR-WS, Vol. 1418].
Sun SITE Central Europe, 2015, pp. 16-20. [Online]. Available:
https://eprints.qut.edu.au/86669/

M. Ghasemi, “Goal-oriented process mining,” Ph.D. dissertation,
University of Ottawa, Canada, 2022. [Online]. Available: http:
//dx.do1.org/10.20381/ruor-27301

N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate
Distributions. Wiley, 1994, vol. 2, ch. Beta distributions, pp. 210-275.
M. G. Armentano and A. A. Amandi, “Towards a goal recognition
model for the organizational memory,” in Computational Science and
Its Applications — ICCSA 2012. Springer, 2012, pp. 730-742. [Online].
Available: https://doi.org/10.1007/978-3-642-31137-6_55

J. Yan, D. Hu, S. S. Liao, and H. Wang, “Mining agents’ goals in
agent-oriented business processes,” ACM Trans. Manage. Inf. Syst.,
vol. 5, no. 4, 2015. [Online]. Available: https://doi.org/10.1145/2629448
M. Santiputri, N. Deb, M. A. Khan, A. Ghose, H. Dam, and N. Chaki,
“Mining goal refinement patterns: Distilling know-how from data,” in
Conceptual Modeling. Springer, 2017, pp. 69-76. [Online]. Available:
https://doi.org/10.1007/978-3-319-69904-2_6

O. Akhigbe, M. Alhaj, D. Amyot, O. Badreddin, E. Braun,
N. Cartwright, G. Richards, and G. Mussbacher, “Creating quantitative
goal models: Governmental experience,” in Conceptual Modeling: 33rd
International Conference, ER 2014. Springer, 2014, pp. 466-473.
[Online]. Available: https://doi.org/10.1007/978-3-319-12206-9_40

S. Liaskos, R. Jalman, and J. Aranda, “On eliciting contribution
measures in goal models,” in 2012 20th IEEE International
Requirements Engineering Conference (RE), 2012, pp. 221-230.
[Online]. Available: https://doi.org/10.1109/RE.2012.6345808

K. Ponnalagu, A. Ghose, N. C. Narendra, and H. K. Dam, “Goal-aligned
categorization of instance variants in knowledge-intensive processes,” in
Business Process Management. Springer, 2015, pp. 350-364. [Online].
Available: |10.1007/978-3-319-23063-4_24

M. Dees, M. de Leoni, and F. Mannhardt, “Enhancing process
models to improve business performance: A methodology and case
studies,” in On the Move to Meaningful Internet Systems. OTM
2017 Conferences. Springer, 2017, pp. 232-251. [Online]. Available:
https://doi.org/10.1007/978-3-319-69462-7_15

T. Takei and H. Horita, “Comparison of goal-oriented business process
model repair and discovery,” International Journal of Service and
Knowledge Management, vol. 7, no. 1, 2023. [Online]. Available:
https://doi.org/10.52731/ijskm.v7.11.691

G. Sedrakyan, J. De Weerdt, and M. Snoeck, ‘“Process-mining enabled
feedback: “Tell me what I did wrong” vs. “tell me how to do it right”,”
Computers in Human Behavior, vol. 57, pp. 352-376, 2016. [Online].
Auvailable: https://doi.org/10.1016/j.chb.2015.12.040

T. Gurgen Erdogan and A. Tarhan, “A goal-driven evaluation method
based on process mining for healthcare processes,” Applied Sciences,
vol. 8, no. 6, 2018. [Online]. Available: https://doi.org/10.3390/
app8060894

https://doi.org/10.1007/978-3-031-08848-3
https://www.omg.org/spec/BPMN/2.0.2
https://doi.org/10.1109/D4RE.2018.00008
https://doi.org/10.1109/ACCESS.2024.3514801
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.18417/emisa.17.2
https://doi.org/10.1002/widm.1346
https://doi.org/10.1002/widm.1346
https://doi.org/10.1109/ACCESS.2022.3208231
https://doi.org/10.1007/978-3-030-26619-6_9
https://doi.org/10.1109/REW.2019.00041
https://doi.org/10.1007/s00766-018-00308-3
https://doi.org/10.1007/s00766-018-00308-3
https://rebicte.org/index.php/rebicte/article/view/157
https://doi.org/10.1007/978-3-642-38484-4_33
https://doi.org/10.1109/REW.2017.61
http://www.itu.int/rec/T-REC-Z.151/en
http://www.itu.int/rec/T-REC-Z.151/en
https://doi.org/10.1002/int.v25:8
https://doi.org/10.1007/s10660-009-9039-z
https://doi.org/10.1007/978-3-030-01042-3_9
https://eprints.qut.edu.au/86669/
http://dx.doi.org/10.20381/ruor-27301
http://dx.doi.org/10.20381/ruor-27301
https://doi.org/10.1007/978-3-642-31137-6_55
https://doi.org/10.1145/2629448
https://doi.org/10.1007/978-3-319-69904-2_6
https://doi.org/10.1007/978-3-319-12206-9_40
https://doi.org/10.1109/RE.2012.6345808
10.1007/978-3-319-23063-4_24
https://doi.org/10.1007/978-3-319-69462-7_15
https://doi.org/10.52731/ijskm.v7.i1.691
https://doi.org/10.1016/j.chb.2015.12.040
https://doi.org/10.3390/app8060894
https://doi.org/10.3390/app8060894

	Introduction
	Goal-oriented Process Mining
	Illustrative Example
	GoPED Algorithms and Implementation
	Scalability Experiments and Results
	Overview
	(L1) Distribution of Cases Among Traces
	(L2) Number of Cases
	(L3) Number of Traces (Variants)
	(L4) Length of Traces (Variants)
	(G1) Number of Considered Goals
	(G2) Goal Criteria's Boundaries
	Evaluation Summary

	Related Work
	Limitations and Threats to Validity
	Limitations
	Threats to Validity

	Conclusion
	References

