

Goal-oriented Process Mining: A Scalability Experiment

Mahdi Ghasemi, **Daniel Amyot**, William Van Woensel (<u>damyot@uottawa.ca</u>) 15th International Model-Driven Requirements Engineering (MoDRE) Workshop Valenciá, Spain, September 2, 2025

Process Mining Overview

Process Mining

PO received

Discovered

Why? Data-Driven Requirements Elicitation!

Credit: Dr. Mahdi Ghasemi

Process Mining

Mined Models with Frequencies as Overlay

Mined Models with *Durations* as Overlay

Inform User

(with duration overlay)

Process performance dashboards

Archive Repair

instant

5.38 mins

4.99 mins

7.55 min

instant

Simulations for What-If Analysis

Goal-oriented Process Mining

Important Challenge: Complexity!

Patient Treatment Process @ Hospital (Sepsis infections)

IT Incident Management @ Bank

Process Map: Abstraction and Filtering

Abstraction: Group certain activities together

Filtering:

Frequent activities or arcs

Specific categories of cases or events

What about Filtering based on Goals?

Process Mining: focuses on "how", "what", "where", "who", and especially "when" questions

Goal-oriented modelling: focuses mainly on answering "why" questions

Potential for synergy!

Current process mining:

Log with all cases

Goal-oriented Process Mining:

Log of cases that satisfy goals

Log of cases that do not satisfy goals

Ghasemi, M., Amyot D. (2020) <u>From event logs to goals: a systematic literature review of goal-oriented process</u> <u>mining</u>. *REJ*, 25(1), 67-93.

Goal-oriented Process Mining (GoPM)

GoPM enables the quantitative, goal-driven selection of relevant cases and variants in an event log.

Ghasemi (2022) Goal-oriented Process Mining. PhD thesis, DTI, University of Ottawa, 2022 http://dx.doi.org/10.20381/ruor-27301

GoPM Inputs

DGD EVENT LOG FOR 10 PATIENTS, WITH CURRENT DATA ATTRIBUTES.

Case	Trace	Days	Cost	Rating	Accuracy
C_1	$\langle a, b, c, g \rangle$	4	400	9	1
C_2	$\langle a, b, c, g \rangle$	5	400	9	1
C_3	$\langle a, b, c, g \rangle$	5	400	9	0
C_4	$\langle a, b, c, d, e, c, g \rangle$	11	850	8	1
C_5	$\langle a, b, c, d, e, c, g \rangle$	9	850	7	1
C_6	$\langle a, b, c, d, e, c, g \rangle$	10	850	8	1
C_7	$\langle a,b,c,f,b,c,g\rangle$	8	600	7	1
C_8	$\langle a, b, c, f, b, c, d, e, c, g \rangle$	17	1100	6	1
C_9	$\langle a, b, c, f, b, c, d, e, c, g \rangle$	16	1100	5	1
C_10	$\langle a,b,c,d,b,c,d,e,c,g\rangle$	31	1150	4	1

VDI permimona	EOD	THE D	CD n	DOGEGG
KPI DEFINITIONS	FOR	THED	CiD P	ROCESS.

Indicator	Linked Goal	Worst v.	Threshold v.	Target v.
Process time (days)	Process time decreased	35	13	4
Process cost (\$)	Cost decreased	1200	950	400
Patient rating	Smooth pro- cess	1	6	10
Result Accuracy	Accurately screened	0	-	1

GRL Arithmetic Semantics

OR-Decomposition Links

$$v(S) = Max(v(D_1), v(D_2), ..., v(D_n))$$

Contribution Links

$$v(S) = Max(v(D_1), v(D_2), ..., v(D_n))$$
 $v(S) = Max(0, Min(100, \frac{\sum_{x=1}^{n} (v(D_x) \times NM_x)}{100}))$

Indicators

TH: Threshold W: Worst

$$\begin{array}{c|c} \hline \\ \hline \\ C: \textit{Current} \\ T: \textit{Target} \\ TH: \textit{Threshold} \end{array} v(I) = \begin{cases} 100 & \text{if } C \geq T \\ 0 & \text{if } C \leq W \\ Abs(\frac{C-TH}{T-TH}) \times 50 + 50 & \text{if } TH \leq C < T \\ -Abs(\frac{C-TH}{W-TH}) \times 50 + 50 & \text{if } W < C < TH \end{cases}$$

When T < W

$$v(I) = \begin{cases} 100 & \text{if } C \leq T \\ 0 & \text{if } C \geq W \\ Abs(\frac{C-TH}{TH-T}) \times 50 + 50 & \text{if } T < C \leq TH \\ -Abs(\frac{C-TH}{TH-W}) \times 50 + 50 & \text{if } TH < C < W \end{cases}$$

$$v(A) = Max(0, Min(100, \frac{\sum_{x=1}^{n} (v(E_x) \times W_x)}{Max(100, \sum_{x=1}^{n} (W_x))}))$$

Actors

$$v(A) = Max(0, Min(100, \frac{\sum_{x=1}^{n} (v(E_x) \times W_x)}{Max(100, \sum_{x=1}^{n} (W_x))}))$$

Log Enhanced with Goal Satisfactions

Case	G1	G2	G3	G4	G5	G6
C_1	100	100	88	100	97	97
C_2	94	100	88	100	95	95
C_3	94	100	88	0	95	0
C_4	61	59	75	100	64	64
C_4 C_5	72	59	63	100	65	65
C_6	67	59	75	100	66	66
C_7	78	82	63	100	76	76
C_8	41	20	50	100	36	36
C_9	43	20	40	100	34	34
C_10	9	10	30	100	15	15
Aggregate satisfaction:	65.9	60.9	66	90	64.1	54.8

GoPED Criteria

Three criteria for model discovery in GoPED:

- 1. Case perspective: satisfaction level for one or multiple goals for all cases
- 2. Goal perspective: aggregated satisfaction level of one or multiple goals
- 3. Organization perspective: comprehensive satisfaction level

Goal-oriented Process Enhancement and Discovery (GoPED) Algorithms

Algorithm 1: Case Perspective Input: EnhancedLog ; // Log enhanced with goals **Input:** Q_{case} : Set(criteria); // Each criterion is a triple <goal, operator, value> Input: conf: number ; // Confidence level **Output:** CasesKept: Set(cases) 1 SortByTrace(*EnhancedLog*); 2 *NumCases* ← NumberOfCases(*EnhancedLog*); 3 $trace(case_0) \leftarrow \langle \rangle$; // Add empty trace before log 4 $trace(case_{NumCases+1}) \leftarrow \langle \rangle$; // ... and after log 5 CasesKept $\leftarrow \emptyset$; 6 index \leftarrow 1: 7 while index < NumCases do $SameTraceC \leftarrow \emptyset$; // Cases with same traces $NumSatCasesOfTrace \leftarrow 0;$ repeat $SameTraceC \leftarrow SameTraceC \cup \{case_{index}\};$ if case_{index} meets all criteria of Q_{case} then *NumSatCasesOfTrace++*; index++: until $trace(case_{index}) \neq trace(case_{index-1});$ **if** $NumSatCasesOfTrace/|SameTraceC| \ge conf$ **then** :// Keep case if confidence level is met $CasesKept \leftarrow CasesKept \cup SameTraceC;$ 18 return CasesKept;

```
Algorithm 2: Goal Perspective
  Input: EnhancedLog ; // Log enhanced with goals
  Input: Q_{goal}: Set(criteria); // <goal, threshold>
  Input: G: // Aggregation funct., one per goal
  Output: CasesKept: Set(cases)
1 m \leftarrow \text{NumberOfCases}(EnhancedLog); // \text{NumCases}
2 CasesKept \leftarrow \emptyset:
3 Solve this binary optimization ; // x_i: when equal to
    1, keep case c_i; s_{i,j}: satisfaction level of
    goal j for case c_i
       Maximize z = \sum_{i=1}^{m} x_i s.t.
       \forall r, t, 1 < r < t < m : // All-or-none rule
          \operatorname{trace}(c_r) = \operatorname{trace}(c_t) \Rightarrow x_r = x_t
       // Ensure that Q_{
m goal} constraints are met
       \forall j \text{ where } G_j \in G: \frac{\sum_{i=1}^m x_i \cdot s_{i,j}}{\sum_{i=1}^m x_i} \geq \text{threshold}_j
       x_i \in \{0,1\} // Two potential values for x_i
5 for i = 1 to m do
       if x_i = 1 then
           CasesKept \leftarrow CasesKept \cup \{c_i\}
8 return CasesKept;
```

```
Algorithm 3: Organization Perspective
   Input: EnhancedLog ; // Log enhanced with goals
   Input: Q_{\text{comp}}: \langle oper \in \{ \leq, =, \geq \}, val \in [0..100] \rangle
   Input: G: // Goal model function
   Output: CasesKept: Set(cases)
1 m \leftarrow \text{NumberOfCases}(EnhancedLog); // \text{NumCases}
2 CasesKept \leftarrow \emptyset;
3 Solve this binary optimization ; // x_i: when equal to
     1, keep case c_i; s_{i,j}: satisfaction level of
     goal j for case c_i
        Maximize z = \sum_{i=1}^{m} x_i s.t.
        \forall r, t, 1 < r < t \leq m : //  All-or-none rule
             \operatorname{trace}(c_r) = \operatorname{trace}(c_t) \Rightarrow x_r = x_t
        // Ensure that Q_{\text{comp}} constraint is met G(\frac{\sum_{i=1}^m x_i \cdot s_{i,1}}{\sum_{i=1}^m x_i},...,\frac{\sum_{i=1}^m x_i \cdot s_{i,n}}{\sum_{i=1}^m x_i}) < oper > < val > x_i \in \{0,1\} // Two potential values for x_i
5 for i = 1 to m do
         if x_i = 1 then
              CasesKept \leftarrow CasesKept \cup \{c_i\}
8 return CasesKept;
```

Variant Selection: All Cases or None

ENHANCED LOG OF THE DGD PROCESS: ADDITIONAL GOAL SATISFACTION LEVELS, WITH AGGREGATED VALUES.

Case	G1	G2	G3	G4	G5	G6
C_1 C_2 C_3	100 94 94	100 100 100	88 88 88	100 100	97 95 95	97 95 0
C_4 C_5 C_6	61 72 67	59 59 59	75 63 75	100 100 100	64 65 66	64 65 66
C_7	78	82	63	100	76	76
C_8 C_9	41 43	20 20	50 40	100 100	36 34	36 34
C_10	9	10	30	100	15	15
Aggregate satisfaction:	65.9	60.9	66	90	64.1	54.8

Filter for Case Perspective (Algorithm 1)

Select case variants where:

- $G1 \ge 80 \land G4 \ge 100$
- with a confidence ≥ 60%

For the first variant (cases C_1 to C_3), 2 out of 3 cases (67%) satisfy these goal-oriented criteria; this variant meets the required confidence level.

None of the other variants does.

GoPED Application to Enhanced Event Log

a) Process model discovered from the original event log by Apromore

b) Algo 1 (case perspective) with G1≥80, G4≥100, and confidence = 60%

c) Algo 2 (goal perspective) with aggregated G1 (=81.3) ≥80 and aggregated G3 (=79.5) ≥78

d) Algo 3 (organization perspective) with comprehensive satisfaction (=66.1) \geq 65

Scalability Experiment

Objectives

Evaluate the algorithms' sensitivity to 4 event log factors:

- (L1) distribution of cases among variants
- (L2) number of cases
- (L3) number of traces
- (L4) length of traces

And 2 goal factors:

- (G1) number of goal criteria
- (G2) the goal criteria's boundaries on satisfaction levels

Distribution Formats

(a) Algo 1 3.5 3 y = 6E-06x - 0.00612.5 $R^2 = 0.9994$ 1.5 Lime (s) among variants 1 0.5 Number of cases (b) Algo 2 400 350 $y = 1E-09x^2 + 2E-06x + 1.322$ 300 $R^2 = 0.9993$ (L1) distribution of cases (s) 250 200 150 100 50 Number of cases (c) Algo 3 800 $y = 3E-09x^2 + 1E-05x + 1.6324$ 700 $R^2 = 0.9999$ 600 Time (s) 500 400 300 200 100 Number of cases

Correlation between Algorithm Runtimes and Factors

Factor	Algo. 1	Algo. 2	Algo. 3
(L1) Dist. cases / traces	No corr.	No corr.	No corr.
(L2) Number of cases	Pos., Linear	Pos., Quadr.	Pos., Quadr.
(L3) Number of traces	Pos., Quadr.	Neg., Linear	Neg., Linear
(L4) Length of traces	Pos., Linear	Pos., Linear	Pos., Linear
(G1) Num. cons. goals	Pos., Linear	Pos., Linear	Pos., Linear
(G2) Criteria's bounds	No corr.	No corr.	No corr.

... and fast enough to be used in practice

Some Challenges

- Common absence of goal-related information in event logs, and of goal models
- Tolerance to noise in event logs, in variant selection
- Concept drift in the requirements and goals.

Process Mining

Case ID **Activity Timestamp** Resource.. C0546 01/02/2025T08:29 Confirm order Jane C0546 Goods shipped 01/02/2025T09:02 Alex C0546 Emit invoice 02/02/2025T07:35 Bob C0479 Reject order 02/02/2025T08:25 Jane

Correlation between Algorithm Runtimes and Factors

Event data

Factor	Algo. 1	Algo. 2	Algo. 3
(L1) Dist. cases / traces	No corr.	No corr.	No corr.
(L2) Number of cases	Pos., Linear	Pos., Quadr.	Pos., Quadr.
(L3) Number of traces	Pos., Quadr.	Neg., Linear	Neg., Linear
(L4) Length of traces	Pos., Linear	Pos., Linear	Pos., Linear
(G1) Num. cons. goals	Pos., Linear	Pos., Linear	Pos., Linear
(G2) Criteria's bounds	No corr.	No corr.	No corr.

... and fast enough to be used in practice

Goal-oriented Process Mining (GoPM)

GoPM enables the quantitative, goal-driven selection of relevant cases and variants in an event log.

GoPM: A Clever Way of Simplifying Models!

