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Abstract—Given the advent of large language models (LLM),
automatic goal-based model analysis in goal-oriented require-
ments engineering is a new opportunity. A well-known prob-
lem within systems collaboration is the interoperability of its
components. Pragmatic interoperability is more challenging than
other levels (e.g., syntactic, semantic) since it depends on usage.
Automatic detection of variation points in goal-based models and
variant analysis are vital to improving pragmatic interoperability
between components since they deal with different uses. We
propose an integrative process using a distributed intentionality
modeling language (i*) strategic rationale (SR) goal model with
an LLM to detect independent variation points and analyze which
variant is desirable to improve systems’ pragmatic interoper-
ability. The automatic analysis of the LLM is experimented with
using image classification contexts to detect risk-situation objects.
The detected LLM variation points in i* SR models are evaluated
through a controlled experiment, calculating precision, recall, and
F-measure. The results present an F-measure of 0.3, indicating
that the proposed process is promising in improving pragmatic
interoperability.

Index Terms—Goal-oriented Requirements engineering, inten-
tional modeling, pragmatic interoperability

I. INTRODUCTION

Pragmatic interoperability refers to the mutual understand-
ing of how data exchanged between systems is used, going
beyond the syntactic (format) and semantic (meaning) levels
of interoperability. It concerns ensuring that systems have
the same understanding of the intended effects of exchanged
messages in a specific context [1]. It is critical to the collab-
oration between systems, ensuring that the exchanged data is
understood and acted on consistently in a given context [2].

Pragmatic interoperability can be defined as:

Ii(Dij) = Ij(Dij) (1)

wherein Ii and Ij are system interpretation functions Si and
Sj’, respectively, and Dij denotes the exchanged data. This
ensures that both systems derive equal actionable meaning
from a message. The message must be interpreted in the
correct context, aligned with the intention of the sender,
actionable, and useful for decision making.

Intentional models can help interpret the intended effect of
the message. Strategic Rationale (SR) models are intentional
models that are essential for capturing and visualizing agents’
intentions.

To achieve collaboration in dynamic systems, automatic
analysis in SR models of the message’s intended effect are
desirable. For this, detecting variation points and analyzing
variants are necessary. Variation points are places in design
artifacts where a specific decision has been narrowed to several
options but the option to be chosen for a particular system has
been left open [3]. In our case, variation points are the goals
(ends) which are refined into tasks (means), such that decisions
could vary by analyzing variants’ impact. Variation points are
the model’s place where decisions or actions could vary by
analyzing variants’ impact.

This work proposes a novel process for detecting variation
points and analyzing their variants in the SR model with a
LLM. We provide the LLM with a JSON file of an SR model
and the text(background information) of different scientific
documents that are used to obtain concepts and knowledge
needed for the task at hand. A controlled experiment analyzed
the LLM performance. We evaluated how using scientific doc-
uments on different prompts can impact LLM performance by
detecting independent variation points. Independent variation
points are variation points that are not refined further. Next,
we used the detected variation points to identify their variants
and select which variants are more appropriate for use in



Fig. 1. The camera system produces frames and stores them in its message broker. The detection system consumes the frames from the camera system’s
message broker, interprets the context of each scene, and decides whether it is an alert case. Two situations can occur when data is exchanged between these
systems: (a) Collaboration with pragmatic interoperability; (b) Collaboration without pragmatic interoperability.

image contexts. It contributes to pragmatic interoperability
because we evaluate the system capability before systems
collaboration. The intended effects can be interpreted with
high probability. Besides, it ensures alignment by identifying
variation points and reconciling intended and actual effects
during runtime.

Through our approach, we seek to answer the following
research question: How does evaluating intentional models
automatically improve pragmatic interoperability?

We organized this paper as follows: Section 2 describes the
background, Section 3 describes related work, Section 4 details
our research design choices, Section 5 shows the experiment,
Section 6 defines the variants analysis and system selection,
Section 7 evaluates the results, and Section 8 summarizes the
contributions and describe possible future works.

II. BACKGROUND

In the following subsections, we will present an example
of pragmatic interoperability, system’s capability modeling
through goal model and variation points and variants.

A. Pragmatic interoperability problem example

We provide an example of pragmatic interoperability, stress-
ing that a correct interpretation of intention depends on the
provided context. As illustrated in Figure 1, two systems
collaborate to alert the security sector about suspicious detec-
tions in security camera images. The camera system provides
the images, whereas the gun detection system provides the
interpretation of the image based on its context.

In the case of (b) image, two armed officers in front of
a building, the detection system alerts the security sector.
However, this is not a threat, so there was a misinterpretation
of the intention of the situation, which was not to provide
an alert. This causes a pragmatic interoperability problem,
as understanding the intended effect does not align with the
interpreted effect.

In image (a), a gun within a backpack inside a car, the
detection system alerts the security sector. In this case, it is
a threat. As such, the intention is to alert the security sector
within a time window of a maximum of 10 seconds. When
the detection system interprets the image and its context, it
concludes that alerting the security sector is necessary. The
detection system issues the alert in 3 seconds. In this case

pragmatic interoperability is achieved, the effect produced
matches the intention.

B. Detection systems’ capability modeling

This section shows the i* strategic rationale model [16]
from the systems presented in the scenario of Figure 1. An
SR model is defined by an actor (circle) that sets a boundary
for its goals (ovals), softgoals ( curved cloud-like shapes),
tasks (hexagons), and resources (rectangles), which are linked
either by means-ends relationships (solid arrows) or task
decomposition (crossed lines) or contributions ( arrows with
a text label). Different actors are linked by dependency links
(D symbol indicating direction).

Previous work [20] has used i* to model pragmatic in-
teroperability. We adapt the SR model. In this new SR
model version, as illustrated in Figure 2, a second RCNN
[4] detection system is incorporated in addition to the Yolo
[5] detection system. This added system is a candidate for
collaboration with the camera system. The detection systems’
capability to interpret scenes is the focus of this modeling.
SR modeled each detector’s ability to detect objects in images
based on the accuracy of image interpretation and the time
used in interpretation. It can aid in selecting the most suitable
detector to identify objects in images, thereby ensuring the
correct interpretation of the camera system’s intended effect.
So, how can we explore using the SR model to identify the
best choice between detection models to improve pragmatic
interoperability?

To answer this question, initially, we must understand how
the capability to interpret scenes is present in the SR model.
The SR model can interpret scenes through the YOLO and
RCNN agents. Both have the task of interpreting a normal
scene and a scene with obstruction. These tasks, when per-
formed, contribute positively or negatively to the accuracy and
response time soft goals. These contributions are represented
by relationships called contributing links. A Help Contribution
Link is used when one element’s existence supports or facili-
tates the occurrence of another. It makes a positive contribution
to a system. A Hurt Contribution Link means that one element
interferes, blocks, or undermines another from achieving. It
reflects a negative contribution.



Fig. 2. Strategic Rationale goal model to detect objects in images.

C. Capabilities instances of detection models.

Detectors have capabilities that make them different. Identi-
fying the instances of capability helps identify the differences.
These instances are related to the concept of variability.
Variability refers to the capability of a software product family
to offer different product configurations [9]. The variability is
defined by the introduction of variation points. A variation
point defines a decision point with its possible choices (func-
tions or qualities). The available functions and qualities for a
variation point are called variants. When specific variants are
chosen, it leads to different product outcomes [9].

A variation point in a goal model refers to a decision-
making point in the design process where we choose alter-
native functionalities or behaviors. They represent alternative
paths or solutions that fulfill higher-level stakeholder goals.
In i* [16], the means-end relationship (solid arrows) models
these alternatives; each alternative is a means (task) to achieve
a goal. A task may be decomposed by lower-level goals
through the task decomposition relationship (crossed lines).
This modeling capability provides a way of describing goal
refinement by different abstraction levels. Pistar 1.0, based on
[15], implements the means-end relationship complaining with
the original i*. As illustrated in Figure 3, each arrow represents
a means-end relationship, and that two or more means-ends
generate a variation point VP. If another VP is not subordinate
to this VP, the VP is considered an independent variation point.
So, an independent variation point (IVP) means that there will
be no further goal refinement from this variation point.

Fig. 3. Independent Variation point present in the YOLO detection and RCNN
detection systems

Each means-end arrow represents a variant. Figure 4 shows
the variants of the detection models, starting with a task and
ending with goals and soft goals. Figure 4 illustrates two
possible variants for each detected independent variation point
in this example.

Fig. 4. YOLO and RCNN variants and their impacts on soft goals.

In this way, we can characterize the YOLO detector variants



Paper Variability Goal Modeling: Automatic Interpre-
tation

Pragmatic Interoperability

[11]
Goal Model Extraction from
User Stories Using LLMs

Interprets variable gran-
ularity in user stories.

GPT-4 extracts actors, goals, and soft-
goals from user stories.

Indirect — improves shared under-
standing but lacks runtime support.

[12]
GPT-4 for Goal Model Cre-
ation

Variability in prompts
and model outputs.

GPT-4 interactively builds GRL models
using different prompt settings.

Indirect — supports modeling quality,
not runtime coordination.

[19]
LLMs to Detect Variability in
Requirements

Core — detects vari-
ability in behavioral and
non-functional require-
ments.

Does not include goal interpretation or
modeling.

Indirect — clarifies requirements but no
execution-level alignment.

[10]
Traceability from Security Re-
quirements to Goal Models

Traceability focus; vari-
ability implicit.

LLM (GPT-3.5) links security require-
ments to GRL goals.

Design-time alignment between intent
and specification.

Our Proposal
LLM-Based i* Model Variant
Analysis for Pragmatic Inter-
operability

Detects variation points
and evaluates variants.

Uses LLM to interpret i* SR models,
analyze tasks, softgoals, and context.

Runtime-focused — improves opera-
tional collaboration via intention inter-
pretation and variant selection.

TABLE I
COMPARISON OF CONTRIBUTIONS ACROSS VARIABILITY, GOAL MODELING AUTOMATIC INTERPRETATION, AND PRAGMATIC INTEROPERABILITY

as follows:
• When the detector interprets a normal scene, it achieves

the detection goal, but the interpretation task accuracy
and response time are negatively affected.

• When the detector interprets a scene with obstruction, it
achieves the detection goal, and the interpretation task
accuracy and response time are positively affected.

III. RELATED WORK

Large Language Model (LLM) application to goal-oriented
requirements engineering has recently been promoted as a
viable way to effectively facilitate automation, especially to
reason about user intentions and boost system interoperability.
A series of studies have been made on using LLMs to assist
in generating, investigating, or matching goal models with
requirements documents.

Siddeshwar et al. [11] propose using GPT-4 to distill goal
models from user stories in agile settings. Their approach
leverages iterative prompt engineering and few-shot learning to
generate GRL models, e.g., actors, goals, and soft goals. This
work makes a valuable contribution by handling variability in
user story writing by stakeholders using granularity alignment
and extracting implicit intentions. However, the final products
focus on design-time formalization rather than runtime execu-
tion or coordination of multiple systems.

Chen et al. [?] also evaluate GPT- 4’s skills in constructing
GRL goal models but emphasize the influence of different
schemes of prompting and domain competence. While they
confirm that GPT-4 has a sufficient understanding of modeling
aspects, their effort is more about checking the syntactical and
structural validity of the models generated. It does not concern
itself with runtime variability and system interoperation.

Fantechi et al. [19] resort to discovering the variability of
textual requirements. They assess the performance of LLMs
to extract functional and non-functional variability in natural
language documents. Whilst the paper is not directly about

goal modeling, its findings are transferable to explaining
ambiguous/divergent requirements that would hinder interop-
erability at the point of integrating systems.

Hassine [10] also contributes to traceability by suggesting
that links between security requirements specified can be
traced automatically using natural languages and GRL goal
models. With a Zero-Shot prompting method and GPT-3.5, the
solution has high recall and precision to bind requirements
to goals. Aligning at the security requirements and design
model levels is primarily its focus. However, the method works
mainly at design time and does not extend beyond that to cover
decision-making at runtime or context-aware coordination.

Our work advances the state of the art by shifting the focus
to pragmatic interoperability using dynamic interpretation of
goal models with the assistance of LLMs. We integrate i*
Strategic Rationale models with GPT-3.5 to extract indepen-
dent variation points and reason about their variants with the
help of contextual background knowledge. That makes the
dynamic at-runtime selection of adequate system behaviors
feasible so that the interpreted result concerns the desired
effect in the context. Handling at-runtime decision-making,
our solution bridges a gap in the literature with one step
further from static model generation to operational intention
alignment on diversified systems. While earlier work proved
that LLMs assist in producing goal models, traceability, and
variability detection, our proposal is the first to encompass
all three areas—variability management, understanding of the
goal model, and runtime pragmatic interoperability—under a
single, automated activity.

Table I compares the literature work to our purpose. In
summary, we use LLM, which aims to solve pragmatic
interoperability in runtime and directly supports operational
collaboration.

IV. THE RESEARCH DESIGN

Our objective in defining this research project is to show
that the proposed process can detect variation points and



Fig. 5. The method as described by an SADT Actigram.

analyze variants to select the appropriate detector systems.
This purpose is validated through automatic detection of the
two variation points of the model illustrated in Fig. 3 and
automatic finding and analyzing the four variants (Fig. 4)
produced by the variation points, to solve the pragmatic
problem illustrated in Figure 1 (b).

In Figure 5, the SADT actigram [14] shows the four main
activities that reflect our research design:

• MODEL: Given the i*modeling language, a given context
is modeled using our version of Pistar [15] to reflect the
i* [16] original semantics, and a JSON file is generated
to allow further analysis.

• DECLARE: Given our knowledge of prompting LLMs,
and the context given, we write different context descrip-
tions (background information) and queries. This activity
is supported by Python and a text editor.

• ANALYZE: Each context and query generated in the DE-
CLARE activity and the OpenAI API control the analysis
of the JSON file generated in the MODEL activity. A
Python script is used for activating the responses provided
by the LLM generating variation points.

• EVALUATE: Using recall and precision and a gold
standard produced by two of the co-authors the variation
points are evaluated through an Experiment (Section 5)
to compare the different strategies used in the DECLARE
activity.

V. THE EXPERIMENT

We designed a controlled experiment evaluating LLM per-
formance in detecting independent variation points in SR
models.

A. Experiment design

Our goal is to evaluate the LLM’s performance in detecting
variation points.

The independent variables are a zero-shot prompt (Fig. 7)
with contextual prompt variations. Zero-shot prompting does
not provide explicit examples or demonstrations of how to
complete the task. The model relies entirely on the wording
of the prompt to understand the task. However, contextual
prompting can provide additional information (not examples)
to guide the model’s understanding, which can improve zero-
shot performance by providing relevant background.

Fig. 7. The python code prompt.

The dependent variables are the precision and recall metrics
to evaluate how the model performs in terms of detecting
correct information.

There is one control group. It uses a goal model for
image interpretation analysis. This group uses no background



Fig. 6. A process to detect variation points in SR models using ChatGpt.

information. It is a baseline with no variations in prompts or
data against which to compare the experimental group.

Each model and their variations represent different ex-
perimental groups.There are four variations of background
information for each model. The goal is to analyze whether the
performance in detecting independent variation points of each
prompt in the experimental group is better than the perfor-
mance of each prompt in the control group. The performance
analysis of the control group and that of the experimental
group used descriptive analysis with metrics like precision and
recall to determine the LLM’s performance under different
conditions.

Figure 6 illustrates the variation point detection process
through the Openai API gpt-3.5-turbo-0125. This model is
cheaper than the GPT-4. Openai API is used for prompting.
Context (background) information and the SR model are given
to the API in order to detect independent variation points
(IVP). This context information guides the LLM to better
understand the task at hand (detect IVPs). Different sets
of background information were used. Precision, recall and
f-measure are calculated based on the true positives, true
negatives, false positives, and false negatives identified by
comparison with the gold standard.

B. The experiment execution

To execute the experiment, we invoked the API, with
maxtokens = 400 and temperature = 0.2. You can find
the source code on GitHub.1. First, we provided the prompt
with no background information (empty Txt file) and the

1https://github.com/FigueiredoRoberto/llmistar

image interpretation goal model (textual model representation
in JSON file). This textual model represents the graphical
model based on Figure 2. This prompt data retrieval represent
the control group. This configuration returned all intentional
element described in Table II.

Element Type Intentional elements
A Interpretation be carried out
B Interpret normal scene
C Interpret scene with obstructions
D Accuracy
E Response time
F Image be available

TABLE II
ELEMENT TYPES FOUNDED IN SR GOAL MODEL.

The IVP in Figure 3 is the Gold triplet = {A, B, C} in
YOLO and RCNN agents. This IVP is our gold standard [17].
The API found the exact independent variation point triplet in
retrivel 5 (with background 5), as reported in Table III.

In our evaluation case, the system was required to return
elements A, B, and C in every retrieval attempt. The strict
evaluation policy was employed, according to which the
retrieval was regarded as correct (True Positive) only if it
contained exactly the elements A, B, C, i.e., no omissions
of the elements, no extraneous elements. Any retrieval, which
had at least one of the required elements omitted, was regarded
as a False Negative, and any retrieval, which contained all
the required elements but also had some extraneous, irrelevant
elements, was regarded as a False Positive.

Based on data obtained in Table III, LLM obtained
Precision = 0.25, Recall = 0.50 and F1-score = 0.3.



Fig. 8. A process to select detectors based on image context.

Retrieval # Retrieved Set Evaluation
1 {A, B, C, D, E, F} False Positive (extra elements)
2 {B, C} False Negative (missing A)
3 {A, B, C, D, E, F} False Positive (extra elements)
4 {A, B, C, D, E} False Positive (extra elements)
5 {A, B, C} True Positive (exact match)

TABLE III
RETRIEVED SET FOR EACH BACKGROUND.

VI. SELECTING DETECTORS BASED ON VARIANTS
ANALYSIS

Given that proper background prompts do allow for IVP
identification, we show results of the detector selection anal-
ysis based on the context of each gun image and variant
analysis.

As illustrated in Figure 8, the API was provided with:
Prompt 1, the independent variation points of each detected
actor, and the task of detecting correspondent variants. As
such, the API detected the correct variants.

Given the detected variants, background information about
contribution links, and image context, we designed one new
Prompt 2 to determine which detector variant is best for each
image context. The API found the best choices as shown in
Table IV.

Context Detector variant chosen
Scene with a gun inside a backpack YOLO detector variant
Scene with police officer with a gun RCNN detector variant

TABLE IV
CONTEXT ANALYSIS AND CHOSEN DETECTORS BY LLM.

VII. DISCUSSION

In this section, we will evaluate the results presented in
Tables III and IV, which relate to the detection of IVPs

(independent variation points) in the image interpretation goal
model and the detectors selected for each image context.

Concerning background variations (Tab. III), we conclude
that in background 1, the performance in the control group
is ineffective, for which the model fails to identify the exact
match of the independent variation points. This was expected,
given that the control group lacks the necessary information
or context to understand the independent variation points
in the SR model. In Background 2, two elements of the
triple were retrieved, representing an improvement in the
returned data. Although element A does not appear, other
irrelevant elements were not returned. This may indicate that
the background information in this group helps filter irrelevant
intentional elements for the model. For Background 3, the
model recalled all the elements of Background 1. That means
that while the model is good at retrieving most items related
to IVP, there is much over-selection, contributing to several
false positives. In Background 4, element F was not returned.
This suggests that the background probably provided a better
context. In Background 5, the results match precisely with
the gold triplet, indicating that contextual data contributed to
improving precision and recall. This, in its entirety, shows that
Backgrounds 5 present more helpful information about the
object detection SR model. The precision of 0.25 indicates
that only one in four retrievals that included the triplet A,B,C
did so without including extra, irrelevant elements. On the
other hand, the recall value of 0.50 shows that the system
was able to retrieve the correct triplet in half of the expected
cases. The F1-score of 0.33 confirms that while the system
captures some relevant information, its tendency to include
unnecessary elements significantly lowers the quality of the
retrieved results when strict relevance is demanded.

About the chosen detectors by LLM (tab. IV), we con-



clude that the variants between detectors are unique, and it
allowed the LLM choices based on contexts. This contributes
to supporting pragmatic interoperability and resolving the
problem illustrated in Fig. 1 (b). Background information from
prompt 2 (Fig. 8), based on concepts of contribution links, was
decisive for LLM to select the appropriate detector.

Although our argumentation is based on a small example,
it shows that the merging of LLM with intentional modeling
provides a path to have automated assistance for supporting
pragmatic interoperability. The role of intentional modeling
is the possibility of having points of choice, variation points.
Identifying these points is key to analyzing modeled possi-
bilities and choosing the proper variants, as performed using
the LLM. As identified in previous work on GORE modeling
[12], and shown here, the proper requirements (prompts) are
essential to achieve better results.

Of course, dealing with large models will impose more load
on LLM based IVP identification, and affect the efficiency of
this type of solution. However, different alternatives could be
used to address the issue, including improving the precision,
as well as, turning the intentional model prior to the proposed
process.

VIII. CONCLUSION

The automatic analysis of intentional models using an LLM
demonstrates a promising path toward pragmatic interoperabil-
ity. Our strategy, centering attention on detecting variation
points through the use of LLM, allowed us to experiment
with the importance of proper background prompts. Our work
followed a research design to support automation with a
modeling tool and Python scripts to analyze the different
strategies. We used recall and precision measures to evaluate
these strategies.

The results using LLM to identify independent variation
points are positive, however, detection precision needs to be
improved, thus allowing for the analysis of large models.
Although the samples we have used are not large models, the
strategy is scalable once enough resources are provided. The
level of understandability by GPT of your goals was sufficient,
but more tuning and experiments may improve our strategy.

As for future work, besides tuning, and larger intentional
models, we plan to use Retrieval Augmented Generation
(RAG) [21] to supplement the general LLM. Expanding the
exploration of different scripts will allow for the merging of
other sources to improve the performance of the automation
of variation point detection and variant selection.
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