

Supporting Pragmatic Interoperability: An LLM Based Process to Analyze Distributed Intentionality (i*) Models

MoDRE: The 15th International Model-Driven Requirements Engineering Workshop

Roberto Figueiredo, Julio Cesar Leite, Célia Ralha, Rita Maciel, Daniela Claro julioleite@ufba.br

September 2, 2025

Programa de Pós-graduação em Ciência da Computação
Universidade Federal da Bahia

Outline

- ➤ Context
- Motivation
- ► Research Problem
- ► Scenario
- ► Research Design
 - ► Strategic Rationale Model
 - ▶ Variation Points
 - Experiment
 - ► Results
- ► Conclusion

1 Outline

Context

Motivation

Comparison

Research Problem

Scenario

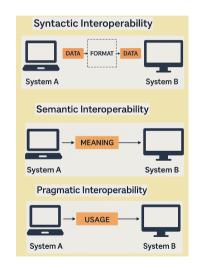
Research Design

Model Declare

.

Analyze

Evaluate


Ack

Context

- Pragmatic Interoperability goes beyond syntactic (format) and semantic (meaning) interoperability.
 - Ensures exchanged data is interpreted and acted upon consistently in a given context.
 - ► Misalignment arises when the intended effect ≠ interpreted effect.

Outline

2 Context

Motivation

Comparison

Research Problem

Scenario

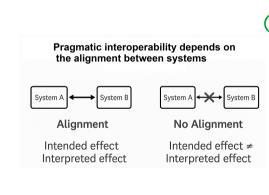
Research Design

Model

Declare

Analyze

Evaluate


Conclusio

Ack

Motivation

- ► Interoperability is critical for system collaboration.
- ► Pragmatic interoperability focuses on how exchanged data is **used**
- ► Challenge: ensuring that intended and interpreted effects of messages align.
- Automatic analysis of intentional models can support this.

Outline

3 Motivation

Comparison

Research Problem

Scenario

Research Design Model

Declare

Analyze

Ack

Comparison with Related Work

Work	Focus	Limitation
Siddeshwar et al. Chen et al. Fantechi et al. Hassine Our Work	Extract goals from user stories Build GRL models Variability in requirements Traceability to goals LLM + i* SR models	Design-time only Structural validity only No goal interpretation Security design focus Runtime focused

Table: Comparison of contributions

Outline

Context

Motivation

4 Comparison

Research Problem

Scenario
Research Design

Model

Declare

Analyze

Evaluate

Ack

Research Problem

▶ Research question: *Does evaluating intentional models automatically* improve pragmatic interoperability?

Outline

Context

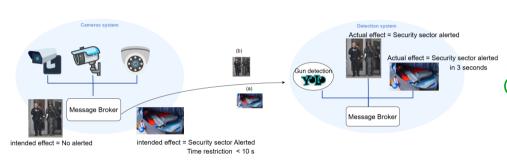
Motivation

Comparison 5 Research Problem

Scenario

Research Design

Model


Declare

Analyze Evaluate

Ack

Scenario: Surveillance system based on CCTV cameras

- lacktriangle (a) Gun hidden in backpack (Camera) ightarrow Detection system ightarrow True alert.
- lackbox (b) Police officer with gun (Camera) \rightarrow Detection system \rightarrow False alert.

Outline

ontovt

Motivation

Comparison

Research Problem

6 Scenario

Research Design

Model

Declare

Analyze

Evaluate

Conclusion

Ack

Research Design

- ▶ Model → Build SR model.
- ▶ Declare → Prepare prompts.
- ► Analyze → Use LLM.
- ► Evaluate → Measure performance.

Outline

Context

Motivation

Comparison

Research Problem

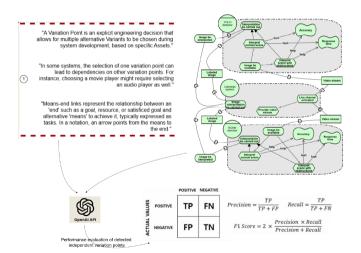
Scenario

7 Research Design

Model

Declare

Analyze


Evaluate

Ack

Research Design

Outline

Context

Motivation

Comparison
Research Problem

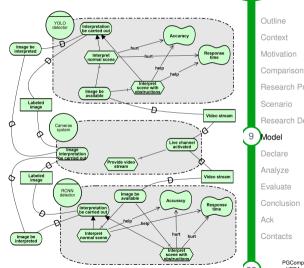
Scenario

8 Research Design

Model

Declare

Analvze


Evaluate

Conclusion

Ack

Strategic Rationale (SR) Models

- ► Capture goals, tasks, softgoals, and resources.
- ▶ Model system capabilities and alternatives.

Outline

Motivation

Research Problem

Scenario

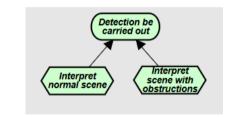
Research Design

Model

Declare

Analyze

Evaluate


Contacts

PGComp LIERA

Variation point

- ► Variation Points (VP): decision nodes
 - ► (detection = interpretation)

Outline

Context

Motivation

Comparison

Research Problem

Scenario

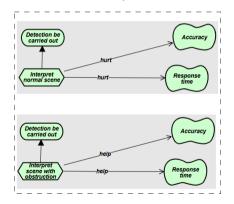
Research Design

10 Model

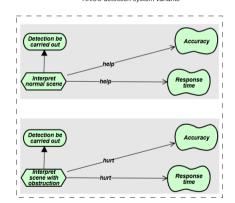
Declare

\nalvze

Analyze


Evaluate

Ack


Variants for each actor

YOLO detection system variants

RNCC detection system variants

Outline

Context

Motivation Comparison

Research Problem

Scenario

Research Design

11 Model

Declare

Analyze

Evaluate

Jondida

Ack

Prompt to detect variation point

- Prompt receives a txt file (raw background) with information extracted from articles
- ▶ Prompt receives the SR model in json file format (goal model str).

```
Combine background information with the goal model and with the prompt task.
prompt = (f"Background: {raw background}\n\nHere is a goal model: {goal model str}."
           Detect independent explicit designed variation points in this goal model.")
```

Outline

Motivation

Comparison

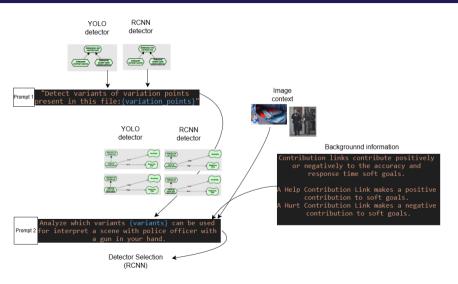
Research Problem

Scenario

Research Design

Model

2 Declare


Analyze

Evaluate

Ack

Prompt to detect variants and select the one that aligns.

Outline

Context

Motivation Comparison

Research Problem

Scenario

Research Design

Model

13 Declare

Analyze

Evaluate

Conclusion

Ack

Experiment

- ► Controlled experiment with GPT-3.5.
- ► Zero-shot vs. contextual prompts.
- ► Metrics: Precision, Recall, F1-score.

Experiment steps:

- Variation point detection.
- ► Variant analysis for alignment.

Outline

Motivation

Comparison

Research Problem

Scenario

Research Design

Model

Declare

14 Analyze

Evaluate

Ack

Variation point (VP) detection

Table: Intentional elements in SR Model

Element Type	Intentional Element
A	Interpretation be carried out
В	Interpret normal scene
С	Interpret scene with obstructions
D	Accuracy
E	Response time
F	Image be available

Outline

Context

Motivation

Comparison

Research Problem

Scenario

Research Design Model

Declare

15 Analyze

Evaluate

Ack

Variation point (VP) detection

Table: Retrieved Sets for each background information

Retrieval #	Retrieved Set	Evaluation
1 2 3 4 5	{A, B, C, D, E, F} {B, C} {A, B, C, D, E, F} {A, B, C, D, E} {A, B, C}	False Positive (extra elements) False Negative (missing A) False Positive (extra elements) False Positive (extra elements) True Positive (exact match)

Outline

Context

Motivation Comparison

Research Problem

Scenario

Research Design

Model

Declare

16 Analyze

Evaluate

Ack

Element-Level Evaluation (Standard IR Way)- Results achieved in VP detection

Each retrieved *element* is evaluated against $G = \{A, B, C\}$ (partial credit allowed).

#	Retrieved Set	TP	FP	FN	Р	R	F1
1	{A, B, C, D, E, F}	3	3	0	0.50	1.00	0.67
2	{B, C}	2	0	1	1.00	0.67	0.80
3	{A, B, C, D, E, F}	3	3	0	0.50	1.00	0.67
4	{A, B, C, D, E}	3	2	0	0.60	1.00	0.75
5	{A, B, C}	3	0	0	1.00	1.00	1.00
Mac	Macro avg. P ~ 0.72 P ~ 0.02 E1 ~ 0.79						

Macro-avg: P \approx 0.72. R \approx 0.93. F1 \approx 0.78 Micro-avg: $P \approx 0.64$, $R \approx 0.93$, $F1 \approx 0.76$

Reading: High recall (A.B.C usually found) but precision drops due to extra elements (D.E.F).

Outline

Motivation

Comparison

Research Problem Scenario

Research Design Model

Declare Analyze

Ack

Evaluate

Contacts

PGCom

Prompt-Level Strict Evaluation (Exact-Match Rule) - Results achieved in VP detection

A retrieval counts as **True Positive** only if the set is *exactly* $\{A, B, C\}$. Subsets \Rightarrow **FN**, supersets (extras) \Rightarrow **FP**.

#	Retrieved Set	Evaluation
1	{A, B, C, D, E, F}	False Positive (extra elements)
2	{B, C}	False Negative (missing A)
3	{A, B, C, D, E, F}	False Positive (extra elements)
4	{A, B, C, D, E}	False Positive (extra elements)
5	{A, B, C}	True Positive (exact match)

Counts: TP = 1, FP = 3, FN = 1

Metrics: Precision = 0.25, Recall = 0.50, F1 = 0.33

Reading: Strict rule is unforgiving; any deviation from {A,B,C} degrades precision and F1.

Outline Context

Motivation

Comparison

Research Problem

Scenario
Research Design
Model

Declare Analyze

Evaluate Conclusion

Ack

Contacts

PGComp UFBA

Variant analysis for alignment

- ► LLM identifies YOLO and RCNN variants.
- Contextual choices:
 - ► Gun in backpack → YOLO.
 - ightharpoonup Police officer with gun ightarrow RCNN.

Context	Detector variant chosen
Gun inside a backpack Police officer with a gun	YOLO detector variant RCNN detector variant

Outline

Context

Motivation

Comparison

Research Problem

Scenario

Research Design

Model Declare

Analyze

19 Evaluate

Ack

Contacts

PGComp

Conclusion

- Proposed process shows potential for supporting pragmatic interoperability.
- ► Results promising but precision must be improved.
- ► Future directions:
 - Larger models and tuning.
 - ► Retrieval-Augmented Generation (RAG).
 - ► Broader application.

Outline

Context

Motivation

Comparison

Research Problem

Scenario

Research Design

Model

Declare

Analyze

Evaluate

20 Conclusion

Ack

Acknowledgements

This work was supported by:

- ► FAPESB (TIC 0002/2015, PIE002/2022)
- ► CNPq (4033361/2023-0,310505/2023-2)

Outline

Motivation

Comparison

Research Problem

Scenario

Research Design

Model

Declare

Analyze

Evaluate

21 Ack

Contacts

PGComp

Contacts

Daniela B. Claro, Rita S. P. Maciel, Celia Ghedini Ralha Julio C. S. P. Leite, Roberto de C. Figueiredo

{dclaro, rita.suzana, julioleite, roberedo}@ufba.br {ghedini}@unb.br

www.formas.ufba.br

Outline

Context

Motivation

Comparison

Research Problem

Scenario

Research Design

Model

Declare

Analyze

anaiyze

Evaluate

Conclusion

Ack

