
Viability Checking and Requirements
Completion:

How Constraint Programming Helps State
Machines in Performance Requirements

Engineering

Gefei Zhang
Hochschule für Technik und Wirtschaft Berlin, Germany

September 2, 2025

Gefei Zhang 1/9



Motivation

▶ State machines very popular for modeling reactive
components

⇒ Integrate performance modeling into state machines

▶ Validate and complete the requirements
⇒ Use constraint programming

Gefei Zhang 2/9



Motivation

▶ State machines very popular for modeling reactive
components

⇒ Integrate performance modeling into state machines

▶ Validate and complete the requirements
⇒ Use constraint programming

Gefei Zhang 2/9



Running Example

Idle Charge
CreditCard

Order
Garage

Order
RentalCar

Reserve
RentalCar

Order
TowTruck

request

Reserve
TowTruck

OrderTruckAndCar

Running
entry / logRequest();
exit / logResult();

Gefei Zhang 3/9



Performance Modeling in UML State Machines (1)

Order
Garage

Order
RentalCar

Reserve
RentalCar

Idle

OrderTruckAndCar

{maxStart = 30s, since = request}

Reserve
TowTruck

OrderTowTruck
{minDuration = 20s}
{maxDuration = 40s}

request

exit / logResult()

Running
{maxDuration = 90s}

entry / logRequest() {minDuration = 1s}
{minDuration = 1s}

CreditCard
Charge

{minDuration = 5s}

{maxDuration = 60s}

Assumptions
▶ A state may remain active for some time
▶ An action needs some time to finish
▶ A state transition succeeds immediately (unless it carries

out an action)
▶ maxDuration: requirement; minDuration: constraint

Gefei Zhang 4/9



Performance Modeling in UML State Machines (2)

Order
Garage

Order
RentalCar

Reserve
RentalCar

Idle

{minDuration = 5s}
CreditCard

Charge

OrderTruckAndCar
{maxDuration = 60s}

Reserve
TowTruck

OrderTowTruck
{minDuration = 20s}
{maxDuration = 40s}

request

entry / logRequest() {minDuration = 1s}
exit / logResult() {minDuration = 1s}

Running
{maxDuration = 90s}

{maxStart = 30s, since = request}

▶ maxStart: latest starting time since some event

Next
▶ Viability?
▶ Other states?

Gefei Zhang 5/9



Performance Modeling in UML State Machines (2)

Order
Garage

Order
RentalCar

Reserve
RentalCar

Idle

{minDuration = 5s}
CreditCard

Charge

OrderTruckAndCar
{maxDuration = 60s}

Reserve
TowTruck

OrderTowTruck
{minDuration = 20s}
{maxDuration = 40s}

request

entry / logRequest() {minDuration = 1s}
exit / logResult() {minDuration = 1s}

Running
{maxDuration = 90s}

{maxStart = 30s, since = request}

▶ maxStart: latest starting time since some event

Next
▶ Viability?
▶ Other states?

Gefei Zhang 5/9



Constraint Programming

▶ Given domains of variables and a set of constraints, find
possible valuations such that the constraints are satisfied

1 ≤ x ≤ 20

9 ≤ y ≤ 11

150 ≤ z ≤ 161

xy = z

var 1..20: x;
var 9..11: y;
var 150..161: z;

constraint x*y = z;

solve satisfy;

▶ Optimisation also possible
▶ For example: find the largest z satisfying the above

constraint

Gefei Zhang 6/9



Constraint Programming

▶ Given domains of variables and a set of constraints, find
possible valuations such that the constraints are satisfied

1 ≤ x ≤ 20

9 ≤ y ≤ 11

150 ≤ z ≤ 161

xy = z

var 1..20: x;
var 9..11: y;
var 150..161: z;

constraint x*y = z;

solve satisfy;

▶ Optimisation also possible
▶ For example: find the largest z satisfying the above

constraint

Gefei Zhang 6/9



Constraint Programming

▶ Given domains of variables and a set of constraints, find
possible valuations such that the constraints are satisfied

1 ≤ x ≤ 20

9 ≤ y ≤ 11

150 ≤ z ≤ 161

xy = z

var 1..20: x;
var 9..11: y;
var 150..161: z;

constraint x*y = z;

solve satisfy;

▶ Optimisation also possible
▶ For example: find the largest z satisfying the above

constraint

Gefei Zhang 6/9



Constraint Programming

▶ Given domains of variables and a set of constraints, find
possible valuations such that the constraints are satisfied

1 ≤ x ≤ 20

9 ≤ y ≤ 11

150 ≤ z ≤ 161

xy = z

var 1..20: x;
var 9..11: y;
var 150..161: z;

constraint x*y = z;

solve satisfy;

▶ Optimisation also possible
▶ For example: find the largest z satisfying the above

constraint

Gefei Zhang 6/9



Transforming State Machine to Constraint System

Order
Garage

Order
RentalCar

Reserve
RentalCar

Idle

{minDuration = 5s}
CreditCard

Charge

OrderTruckAndCar
{maxDuration = 60s}

{maxStart = 30s, since = request}

Reserve
TowTruck

OrderTowTruck
{minDuration = 20s}
{maxDuration = 40s}

request

entry / logRequest() {minDuration = 1s}
exit / logResult() {minDuration = 1s}

Running
{maxDuration = 90s}

int: m = 90;
var 0..m: Running;
var 0..m: OrderTruckAndCar;
var 0..m: OrderTowTruck;
...
...

Gefei Zhang 7/9



Transforming State Machine to Constraint System

Order
Garage

Order
RentalCar

Reserve
RentalCar

Idle

{minDuration = 5s}
CreditCard

Charge

OrderTruckAndCar
{maxDuration = 60s}

{maxStart = 30s, since = request}

Reserve
TowTruck

OrderTowTruck
{minDuration = 20s}
{maxDuration = 40s}

request

entry / logRequest() {minDuration = 1s}
exit / logResult() {minDuration = 1s}

Running
{maxDuration = 90s}

constraint logRequests >= 1;
constraint logResult >= 1;
constraint OrderTruckAndCar <= 60;
constraint OrderTowTruck >= 20;
constraint OrderTowTruck <= 40;
...

Gefei Zhang 7/9



Transforming State Machine to Constraint System

Order
Garage

Order
RentalCar

Reserve
RentalCar

Idle

{minDuration = 5s}
CreditCard

Charge

OrderTruckAndCar
{maxDuration = 60s}

{maxStart = 30s, since = request}

Reserve
TowTruck

OrderTowTruck
{minDuration = 20s}
{maxDuration = 40s}

request

entry / logRequest() {minDuration = 1s}
exit / logResult() {minDuration = 1s}

Running
{maxDuration = 90s}

constraint
ReserveTowTruck + OrderTowTruck + Final1 <=
OrderTruckAndCar;

constraint
ReserveRentalCar + OrderRentalCar + Final2 <=
OrderTruckAndCar;

Gefei Zhang 7/9



Transforming State Machine to Constraint System

Order
Garage

Order
RentalCar

Reserve
RentalCar

Idle

{minDuration = 5s}
CreditCard

Charge

OrderTruckAndCar
{maxDuration = 60s}

{maxStart = 30s, since = request}

Reserve
TowTruck

OrderTowTruck
{minDuration = 20s}
{maxDuration = 40s}

request

entry / logRequest() {minDuration = 1s}
exit / logResult() {minDuration = 1s}

Running
{maxDuration = 90s}

constraint
ChargeCreditCard +
OrderGarage +
OrderTruckAndCar <=
Running - logRequest - logResult;

Gefei Zhang 7/9



Viability Checking and Requirements Completion

▶ Are the existing requirements satisfiable?
solve satisfy;

▶ How much time can OrderGarage take at most?
solve maximize OrderGarage;

Gefei Zhang 8/9



Viability Checking and Requirements Completion

▶ Are the existing requirements satisfiable?
solve satisfy;

▶ How much time can OrderGarage take at most?
solve maximize OrderGarage;

Gefei Zhang 8/9



Conclusions and Future Work

▶ Simple notation to incorporate performance requirements
into UML state machines

▶ Using constraint solving to check viability and complete
requirements

Future Work
▶ More complex state machines, including cycles
▶ Tool support

Gefei Zhang 9/9



Conclusions and Future Work

▶ Simple notation to incorporate performance requirements
into UML state machines

▶ Using constraint solving to check viability and complete
requirements

Future Work
▶ More complex state machines, including cycles
▶ Tool support

Gefei Zhang 9/9


