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Abstract—Complex multidisciplinary energy systems, such as
gas turbines, and power systems involve several interrelated
subsystems, each designed by special engineering teams with
dedicated domain expertise. The rapid adoption of machine
learning (ML) in the design and manufacturing of such systems
introduces several software engineering challenges. An important
challenge is how to incorporate engineering knowledge from
domain experts into a machine learning workflow in a systematic
and (semi-)automated way. This paper presents a vision towards
a model-driven approach to address this challenge by capturing
domain knowledge using knowledge graphs. Using gas turbines
as a use case, we propose a high-level architecture that supports
the iterative evaluation of ML models through automated per-
formance reporting enriched with domain insights.

Index Terms—Artificial intelligence, Software engineering,
knowledge engineering, learning systems, machine learning,
knowledge graph, meta modeling, model-driven software engi-
neering.

I. INTRODUCTION

Gas turbines are the commonly used type of internal
combustion engine used for power generation. The design
and development of such engines usually involve expertise
from mechanical engineers for various subsystems such as
the secondary air system, turbine, compression, combustion,
and fan. Hence, this results in a considerable amount of
engineering knowledge that various teams within the project
could exploit. Figure 1 gives a brief overview of information
flow between subsystems in aero-derivative gas turbines.

With the rapid innovation in artificial intelligence, industries
have started integrating machine learning (ML) workflows in
multidisciplinary systems’ design and space exploration. In big
research organizations, ML practitioners are responsible for
the proof of concept (PoC) development of surrogate models
for various components of such complex multidisciplinary
systems. Due to the lack of a standardized process for domain-
knowledge gathering, repetitive discussions are inevitable
among domain experts and ML practitioners throughout the
ML workflow for various purposes such as model requirement
understanding, conforming to system-specific constraints, re-
specting operating conditions, and performance metrics selec-
tion. Therefore, optimization of ML models and evaluation of
performance can be a very time-consuming process.

Fig. 1. Inter-relatedness of engine subsystems and models. Arrows highlight
information passed between the subsystems [1].

Since model-based software engineering (MBSE) tech-
niques have been applied successfully to many large-scale
industrial applications ([2]), our research hypothesis is that
a model-driven approach could effectively aid software en-
gineering challenges in integrating the ML workflow for
the design and space exploration of such multidisciplinary
systems. Since gas turbines reflect an ideal multidisciplinary
complex system, in this vision paper we have proposed our
vision conceptually applied to the gas turbines as a use case.

We see two key challenges in the systematic and automated
integration of the ML workflow in gas turbine design explo-
ration, which could be improved via knowledge graph: domain
knowledge and performance reporting as summarized below:

• Domain knowledge gathering: In multidisciplinary sys-
tems like gas turbines, domain knowledge is often soiled
within specialized teams—mechanical, thermal, control
systems, and materials engineering-each using their own
tools, terminologies, and assumptions. This knowledge
is typically embedded in design documents, simulation
models, spreadsheets, and even informal conversations.
Capturing and structuring this knowledge for use in ML
workflows is a major challenge. ML engineers often
lack the deep domain expertise required to interpret this



information correctly, leading to frequent back-and-forth
with domain experts. This not only slows down the devel-
opment cycle but also increases the risk of misinterpre-
tation or loss of critical insights. A systematic approach
to gathering and formalizing domain knowledge—such
as through knowledge graphs—can help bridge this gap
by making expert knowledge machine-readable, reusable,
and traceable across the design process.

• Performance reporting: ML engineers often face signif-
icant friction when evaluating model performance in the
context of complex engineering systems. Unlike standard
ML benchmarks, performance metrics in gas turbine
design are highly domain-specific, often derived from
physical laws, safety constraints, or long-term operational
goals. These metrics are not always readily available or
formally defined—they may reside in expert intuition,
legacy documents, or proprietary simulation tools. As a
result, ML practitioners must engage in repeated, time-
consuming discussions with domain experts to understand
which metrics matter, how to compute them, and how
to interpret results. This manual process not only delays
iteration cycles but also hampers reproducibility and
traceability. Automating performance reporting through
a structured, knowledge-driven approach can streamline
this process, enabling faster, more reliable integration of
ML into engineering workflows.

This paper addresses in further detail several relevant use
cases where knowledge graphs can be leveraged for system-
atically capturing the key concepts and generation of domain-
focused performance reports.

II. RESEARCH QUESTIONS

To address the software engineering (SE) challenges iden-
tified in Section III, we define two research questions (RQs),
each with specific objectives and corresponding conceptual-
ized solutions proposed in this paper.

RQ1

How can we exploit modeling to standardize the pro-
cess of knowledge acquisition for ML projects in a
large, multi-disciplinary industrial setting?

This RQ is motivated with the challenge of “Ineffective
Use of Engineering Knowledge” discussed in Section Section
III, where domain knowledge is fragmented across teams and
tools.

Obj 1.1: Analyze current practices in domain knowl-
edge acquisition to inform the design of a structured
modeling approach.

Obj 1.2 Propose a meta-model that formalizes require-
ments, engineering insights, and data characteristics to
support traceable and reusable knowledge integration.

To achieve Obj 1.1 and Obj 1.2, we analyzed current ML
workflows in multidisciplinary industrial settings (see figure
2) —particularly in gas turbine design—to identify key pain
points in domain knowledge acquisition. Also, We introduce a
UML-based meta-model (figure 5) and knowledge graph archi-
tecture (figure 3) that captures domain-specific requirements
and insights in a structured, machine-readable format. This
supports consistent knowledge acquisition and reuse across
ML projects.

RQ2

How we can overcome identified SE challenges when
integrating ML workflow in large scale system design?

RQ2 targets the challenge of “Performance Evaluation and
Reporting” (Section III), where ML practitioners face friction
in aligning evaluation with engineering goals.

Obj 2.1: Define a workflow that aligns ML perfor-
mance evaluation with domain-specific constraints and
metrics.

Obj 2.2 Conceptualize a semi-automated reporting
mechanism to reduce iteration cycles and manual ef-
fort.

To address the above objectives, we proposed a model-
driven ML workflow (see figure 4) that integrates domain
knowledge acquisition with performance evaluation. The
workflow is designed to ensure that evaluation metrics are
not generic but are instead derived from domain-specific
requirements captured during the knowledge acquisition phase.
We also conceptualized a semi-automated reporting tool that
leverages the knowledge graph to generate domain-aligned
performance reports (figure 4, point 3). While still at the archi-
tectural level, the proposed tool aims to reduce manual effort,
support versioning, and streamline feedback loops between
ML practitioners and domain experts

III. CHALLENGES

The integration of ML into the design of complex, mul-
tidisciplinary systems presents unique SE challenges. In this
section, we categorize these challenges into two major themes
as follows, Each of these categories reflects a critical bottle-
neck in the current ML workflow, where the lack of structured
processes and automation hinders scalability, traceability, and
collaboration between ML practitioners and domain experts.

• Ineffective Use Of Engineering Knowledge



Fig. 2. Existing workflow for ML development adopted by industries

In large-scale industrial settings, engineering knowledge
is often distributed across multiple teams and embedded
in diverse formats—ranging from simulation models and
spreadsheets to informal discussions and legacy docu-
mentation. This knowledge is typically tacit, highly con-
textual, and not readily accessible to ML practitioners. As
a result, ML workflows often rely on generic assumptions
or incomplete information, leading to suboptimal model
performance and misalignment with engineering goals.
For example, in the context of gas turbine design, under-
standing the thermodynamic behavior of subsystems or
the implications of material fatigue under varying load
conditions requires deep domain expertise. Without a
structured mechanism to capture and reuse this knowl-
edge, ML engineers are forced to repeatedly consult do-
main experts, which is time-consuming and error-prone.
This inefficiency not only slows down development cycles
but also limits the reproducibility and scalability of ML
solutions.
A model-driven approach—such as using knowledge
graphs to formalize and interlink domain concepts—can
help address this challenge by making engineering knowl-
edge machine-readable, queryable, and reusable across
projects.

• Performance Evaluation and Reporting The goal of per-
formance evaluation in ML-driven engineering systems
is multifaceted. A model must not only generalize well
to unseen inputs but also conform to environmental con-
straints, handle edge cases gracefully, and demonstrate
robustness under varying conditions. In safety-critical
domains like aero-derivative gas turbines, these require-
ments are even more stringent. A model that performs
well on average may still be unacceptable if it fails under
rare but high-risk scenarios.
For instance, over-prediction or under-prediction of in-
let parameters—critical components that regulate airflow
into the turbine—can have severe consequences. In such
cases, minimizing average error (e.g., mean squared error
or mean absolute error) is insufficient. Instead, domain-
specific metrics that prioritize the avoidance of catas-
trophic outliers are essential. This highlights the need for

performance evaluation to reflect business priorities and
safety constraints, not just statistical accuracy.
As shown in the Figure 2 ML practitioners in industries
with multidisciplinary setting are responsible for selecting
evaluation metrics, generating plots, and documenting
results—often without clear or stable requirements. This
process typically unfolds in three manual steps:

– Metric selection and result plotting: In the absence
of a structured knowledge base, practitioners default
to standard ML metrics, which may not align with
business or safety goals.

– Documentation: Without proper versioning tools,
performance results are documented manually, mak-
ing traceability and reproducibility difficult.

– Evaluation and feedback: It involves repeated dis-
cussions to interpret results and refine metrics, con-
suming significant time and efforts.

This repetitive and time-intensive process underscores the
need for a (semi-)automated system that can generate
domain-specific performance statistics, support version-
ing, and enable efficient tracking with minimal manual
intervention.

IV. RELATED WORK

This section reviews prior work across three key areas
relevant to our research as follows:

1) Modeling for knowledge Representation
Model-driven engineering (MDE) and knowledge graphs
are increasingly used to formalize domain knowledge
in complex systems. Recent work by [3] emphasizes
the role of digital twins and semantic modeling in
bridging the gap between domain expertise and data-
driven methods. Knowledge graphs, in particular, have
shown promise in representing multidisciplinary rela-
tionships and constraints in engineering systems in the
survey report by [4]. Formal modeling approaches, such
as domain-specific languages (DSLs), have also been
proposed to reduce ambiguity and improve system safety
[5]. For instance, [6] introduce a DSL for describing ML
datasets, focusing on structure, provenance, and social
concerns-complementing our data view that captures
deployment and ML data characteristics
Similarly, Neo4j has been explored by [7] as a graph
database alternative to traditional relational database
management system (RDBMS) for its scalability and
suitability in representing highly connected engineering
data. MIT researchers [8] have also developed natural
language interfaces for querying graph databases, en-
abling non-experts to interact with structured knowledge
bases.
Additionally, [9] presents a UML-based model-driven
framework for domain-specific adaptation of time series
forecasting pipelines. Validated through academic and
industrial case studies, this work demonstrates the prac-
tical benefits of integrating domain knowledge into ML



workflows and reinforces the importance of structured
modeling in multidisciplinary domains.

2) AutoML and ML Workflow Platforms: AutoML plat-
forms such as Amazon SageMaker, Google AutoML,
and Azure ML have significantly streamlined the ML
development lifecycle by automating tasks like data
preprocessing, model selection, and hyperparameter tun-
ing. However, these platforms are typically designed
for general-purpose applications and often lack the
flexibility to incorporate domain-specific constraints or
performance metrics.
[10] provide a comprehensive review of ML applications
in industrial settings and emphasize that while AutoML
tools are promising, their effectiveness is limited in
domains where safety, interpretability, and domain align-
ment are critical. These tools often assume static prob-
lem definitions and do not support iterative refinement
based on evolving engineering requirements.
This gap has led to calls for more customizable and
domain-aware ML workflows that can integrate expert-
defined metrics, constraints, and feedback loops. Such
workflows would not only improve model relevance but
also enhance trust and adoption in industrial environ-
ments.

3) ML in Industrial Systems: ML is increasingly applied
in industrial systems for predictive maintenance ([11]),
anomaly detection, and design optimization ([1]). [12]
identify multiple challenges (23 in total) in deploying
ML at scale in industrial settings, including adaptability,
scalability, and safety. These challenges are particularly
relevant in multidisciplinary systems, where ML must
align with strict engineering and safety requirements.
The integration of ML into such systems requires not
only technical robustness but also traceability and ex-
plainability. The use of knowledge graphs and structured
modeling can help bridge this gap by aligning ML
outputs with domain-specific goals.

V. SOLUTION

To address the challenges outlined in Section III, we propose
a model-driven workflow that integrates domain knowledge
acquisition with (semi-)automated performance reporting. This
workflow is illustrated in Figure 4, which outlines the key
stages from knowledge gathering to model evaluation and
feedback. The approach is designed to streamline collaboration
between ML practitioners and domain experts, reduce iteration
cycles, and improve traceability across the ML life-cycle.

The solution is structured around two core components:
1) Knowledge Acquisition–capturing domain-specific re-

quirements, data insights, and engineering constraints
using a structured meta-model. To support this, we use
Unified Modeling Language (UML) to represent various
views of the system. UML is widely adopted in both
academia and industry for modeling complex software
systems due to its versatility in design, analysis, and
documentation tasks ([13]).

Fig. 3. Workflow for knowledge acquisition

Fig. 4. Proposed ML workflow. 1: Knowledge acquisition, 2: ML Develop-
ment, 3: Reporting, 4: Feedback loop with experts, 5: Evaluation.

2) Semi-automated Reporting – leveraging the knowledge
graph to generate performance reports aligned with
domain-specific metrics and business goals.

Below we discuss the core components in detail:
1) Knowledge Acquisition through Knowledge Graph

Figure 3 illustrates the proposed workflow for knowl-
edge acquisition in the context of integrating domain
expertise into ML workflows. It outlines the structured
process of gathering, organizing, and formalizing do-
main knowledge.
To achieve this workflow,we formalize the domain of our
envisioned knowledge graph in a meta-model that shows
the required concepts to capture for the effective use of
domain knowledge and build a knowledge repository.
This meta-model serves as the foundation for capturing
requirements, engineering insights, data characteristics,
and project evolution in a structured and standardized
manner. This approach is inspired with prior work by
[10] and [14] which has shown that formal modeling can
significantly reduce ambiguity and improve traceability
in complex engineering systems.
The meta-model, illustrated in figure 5, is organized
into three distinct views and one extended view (ver-
sion) to track the artifacts. The first captures project



Fig. 5. Meta-model & Requirement view

requirements, including DeploymentRequirement, ML-
Requirement, and MiscRequirement. The second focuses
on engineering knowledge that can be formalized. The
third addresses project data, detailing key information
relevant to both deployment and training contexts. The
final view tracks the evolution of requirements and data
over time. Each of these views is discussed in detail
below.

a) Requirement view: It helps capture the foundational
needs of a project, ensuring that ML models are
aligned with engineering goals and deployment
realities. As shown in figure 5 the requirement class
captures three essential categories of information
as follows:
i) DeploymentRequirement: This class captures

all constraints and expectations related to de-
ploying the ML model in a real-world industrial
setting. It includes operational constraints, in-
tegration needs, performance expectations, and
hardware/software dependencies.

ii) MLRequirement: It focuses on the technical
and algorithmic aspects of the ML model itself.
It includes model objectives, data requirements,
training constraints, evaluation metrics beyond
standard ML metrics like accuracy or MSE, and
Interpretability & Explainability.

iii) MiscRequirement: This category captures addi-
tional project-specific or organizational require-
ments that don’t fall neatly into the other two
categories. It may include: regulatory compli-
ance, documentation needs, collaboration pro-
tocols, and Security & Privacy requirements.

b) Knowledge view:
The primary objective of this view is to capture
the concepts of DataInsight and ProcessInsight as
depicted in figure 6.
The DataInsight class encapsulates critical infor-
mation related to the data used in the project. This
includes aspects such as data uncertainty (e.g., lim-

Fig. 6. Knowledge view

ited feature availability) and intuitive insights (e.g.,
interrelationships among features). It references the
Feature class to contextualize these insights.
Domain experts may contribute to one or more
domains (e.g., machine learning, mechanical en-
gineering), and these domains can span vari-
ous system components. For instance, combustion
and compression are treated as distinct compo-
nents, each potentially requiring specialized do-
main knowledge.

c) Data view: In most of the projects related to
multidisciplinary systems, the deployment data ab-
breviations are different from ML deployment data.
Hence, this view depicted in figure 7 captures this
information within DeploymentData and MLData
concepts. DeploymentData captures insights such
as featureList (e.g. list of features specific
to the deployment of the model in production)
and deployment-realization (records the
mapping of feature labels with labels being used in
deployment). MLData concept is for understanding
labels (for the features), keyIdentifier (in gas tur-
bine design, a unique io key is being used to map
input and output; hence capturing these io keys
helps in mapping labels and data cleaning) and
feature list (this list includes the available features
for training purpose). MLData class can include
multiple DataSet (e.g. in case of multiple data
sources). Furthermore, each DataSet is composed
of many Feature which captures the feature value
and its kind (required, recommended, or available).
The Feature class is associated with both input
and output roles with DataSet under an XOR con-
straint, indicating that a feature can serve as either
an input or output, but not both simultaneously.

d) Versioning view: Understanding progressive modi-



Fig. 7. Data view

Fig. 8. Versioning view

fication of requirements and data within the project
helps the team in various ways (e.g. tracking the
evolution of model assumptions, comparing per-
formance across different data versions, and en-
suring reproducibility of results). Hence as shown
in figure 8 VersionedElement is generalized to
ProjectData and Requirements classes to captures
the evolution of project data and various require-
ments as the project proceeds. Version concept is
introduced to capture the versionId of each
element within the composing concepts.

2) (Semi-) Automated Report Generation
As discussed in the earlier section, improvements in
model performance beyond a certain threshold often
yield diminishing business value. In multidisciplinary
domains such as aero-derivative systems, iterative dis-
cussions with domain experts are essential to align

model evaluation with system-specific requirements. Re-
cent advancements in ML automation—such as Au-
toML, Amazon SageMaker, DVC, and W&B—have
inspired the integration of CI/CD practices into industrial
ML workflows.
We propose leveraging the knowledge graph, introduced
earlier in this section, to automate the selection of
domain-specific metrics and generate performance re-
ports. These reports not only evaluate the current model
but also compare it with previously deployed versions,
enabling traceable and informed decision-making. Fig-
ure 4 illustrates this high-level workflow.
To support this, we propose to develop a report gener-
ation package tool—a modular set of Python libraries
designed to automate performance evaluation. This tool
enables ML practitioners to avoid repetitive coding and
empowers non-ML teams to participate in performance
analysis.
The tool operates through a three-step process:

a) Metrics selection: This step involves extracting
metrics from the knowledge graph using a graph
pattern matching search engine, updating the
trained model and the test data in the repository. A
user could use the command line or graphical user
interface (GUI) to provide inputs.

b) Result generation and conversion into jupyter-
notebook: The next step involves invoking required
performance libraries (inbuilt within the generation
package tool)—further branching concepts would
be used to keep track of the performance of pre-
vious models for further comparison. The output
of this step is the documented report in a jupyter-
notebook. W&B and DVC frameworks, discussed
in the related work section, would be used to
document the results in jupyter-notebook format.

c) Result evaluation: The last step triggers an auto
email routine to share the link of the jupyter report
across project managers and engineers for further
analysis and investigation. This automation would
avoid turnaround time in setting up a synchronized
meeting, which often takes up many days to sched-
ule.

VI. CONCLUSION AND FUTURE WORK

Domain knowledge is the cornerstone of effective machine
learning workflows in complex engineering systems. However,
the current lack of structured mechanisms to capture and
integrate this knowledge often results in fragmented com-
munication, repeated manual efforts, and suboptimal model
alignment with real-world constraints. This paper presented a
vision for a model-driven approach that leverages knowledge
graphs to formalize domain expertise and automate perfor-
mance evaluation.

Our proposed solution addresses two key challenges: (1)
the need for systematic knowledge acquisition from domain



experts, and (2) the automation of performance reporting to re-
duce turnaround time and improve traceability. By introducing
a meta-model that captures requirements, engineering insights,
data characteristics, and versioning, we provide a structured
foundation for building reusable and traceable ML workflows.
The accompanying report generation tool, integrated with
CI/CD practices, further streamlines the evaluation process and
democratizes access to performance insights across teams.

Looking ahead, future work will focus on implementing
and validating this framework in real-world industrial environ-
ments with a multidisciplinary use cases such as gas turbines
and power systems. This will include implementing the meta-
model in a knowledge graph platform (e.g., Neo4j), applying
it to capture domain knowledge from existing engineering
documentation, and integrating it with an ML pipeline for
surrogate model development. We will assess the effectiveness
of the approach based on metrics such as reduction in iteration
cycles, completeness of captured knowledge, and accuracy of
performance reporting.
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